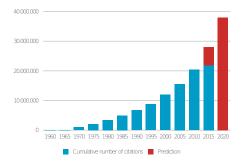
▲□▶ ▲□▶ ▲豆▶ ▲豆▶ Ξ りへで

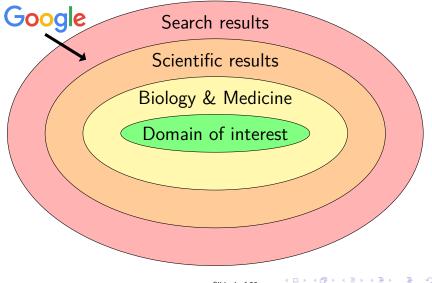

Algorithms for resource-constrained domain-specific knowledge management Bachelor's thesis

Uli Köhler

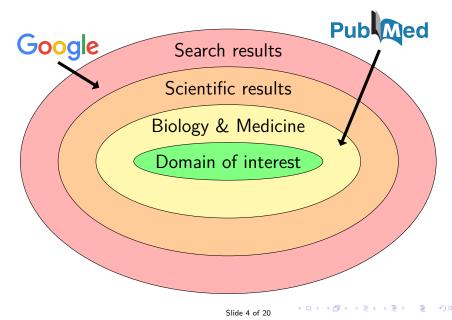
September 24, 2015

イロト イヨト イヨト イヨト 三日

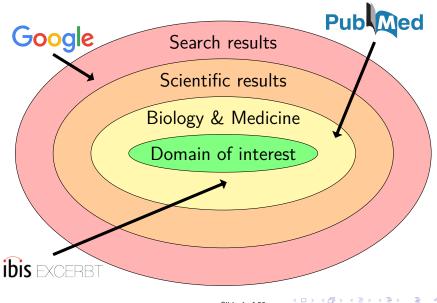
Text mining



- Growing number of publications
- Quick access to information required


 \rightarrow Text mining

・ロト ・回ト ・ヨト ・ヨト


Search engines

Search engines

Search engines

Domain-specific text mining

- ▶ Results from outside of area of interest
 → High false-positive rate
- ► Large-scale text mining is resource-intensive → Expensive hardware required

- Domain-specific text mining covers only a small area of interest
- Smaller dataset ightarrow cheap commodity hardware

TRANSLATRON

- Translational Bioinformatics Tool with relatime ontology
- A simple tool for domain-specific text mining
- Easy to use low hardware requirements
- Web-based user interface
- Real-time search in corpus and ontology
- ► Named entity recognition (NER)

Example: The PrP^{Sc} prion causes ovine prion diseases

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Algorithms for domain-specific text mining

- Conventional algorithms built for large-scale datasets:
 - Hundreds of gigabytes of RAM available
 - Hundreds of terabytes of disk space available
 - Clustered architecture

(日) (部) (注) (注) (三)

Algorithms for domain-specific text mining

- Conventional algorithms built for large-scale datasets:
 - Hundreds of gigabytes of RAM available
 - Hundreds of terabytes of disk space available
 - Clustered architecture
- Novel algorithms required for domain-specific approaches

(日) (部) (注) (注) (三)

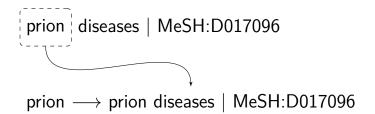
Algorithms in TRANSLATRON

- ► *YakDB* High-performance database
- PRIMORDIAL text indexing
- PRAISER distributed indexing
- PERSIST single-token indexing
- PRESIDE real-time prefix search
- PRO-PANE priority-based result ordering
- ► FiT-NESS named entity recognition
- *WESTSIDE* client interface

(日) (部) (注) (注) (三)

FiT-NESS

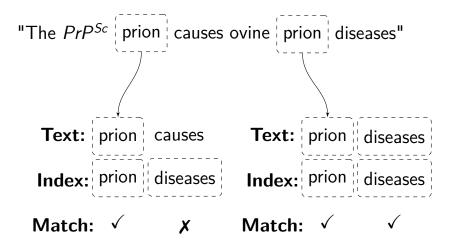
- First-Token-based Named Entity Selection
 Scheme
- Trivial: Single-token entities like BRCA1
- Hard: *Multi-token entities* like *prion diseases*


イロト イヨト イヨト イヨト 三日

FiT-NESS

- First-Token-based Named Entity Selection
 Scheme
- Trivial: Single-token entities like BRCA1
- ► Hard: Multi-token entities like prion diseases
- ► FiT-NESS aproach:
 - Ignore everything but the first token
 - When we find a hit, check if subsequent tokens match the entity

イロト イヨト イヨト イヨト 三日


FiT-NESS II

글 제 귀 글 제

E

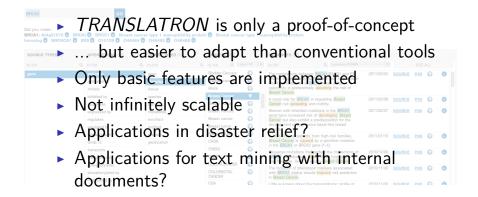
FiT-NESS III

Key advantages of TRANSLATRON

- Can be installed on resource-constrained devices:
 - Notebooks
 - Mobile devices (smartphone, tablet, ...)
 - Embedded devices
- Simple architecture
- Easily adaptable to specific requirements
- Can import internal documents (lab reports, ...)
- Individual installations for each researcher or workgroup

Live demonstration

Outlook & conclusion


TRANSLATRON is only a proof-of-concept BRCA1: At4o21070 B BRCAI B BRCC1 B

homolog BROVCA1 BIRIS 015129 0046484 0046485 0046485

SOURCE TYPES (1) INTERACTIONS (20)		TARGET TYPES (10) TARGETS (267)		EVIDENCES (97)						
gene	activates	gene	Bladder Cancers	0	The connections between BRCA1/BARD1 and PR activity suggested by our findings may help explain why hoat mutations in BRCA1 exert a tissue	2011/05/02	SOURCE	PAS	0	0
	activated by	phenotype	Bladder cancer	Q						
	inhibits	tissue	Block	Ø	specificity in preferentially elevating the risk of Breast Cancer.					
	inhibited by	species	Breast Cancer		A novel role for BRCA1 in regulating Breast	2011/02/08	SOURCE	PAS	0	0
	expresses	pathway	Breast Turnor	0	Cancer cell spreading and motility.					×
	expressed by	metabolite	Breast Tumors	0	Women with inherited mutations in the BRCA1 gene have increased risk of developing Breast	2011/02/07	SOURCE	PAS	Ø	0
	regulates	envirfact	Breast cancer	0	Cancer but also exhibit a predisposition for the					
	regulated by	method	Breast tumor	Ø	development of aggressive basal-like breast tumora.					
	interacts with	phenom	Breast tumour	0	In 15%-30% of patients from high-risk families,	2011/01/10	SOURCE	PAS	0	0
	binds to	geolocation	CASR	0	Breast Cancer is caused by a germine mutation in the BRCAI one IGAC gene (1–4). Missense mutations that perturb the interactions of BRCAI will adversely affect these functions and are, therefore, likely to lead to <u>Breast Cancer</u> . The inclusion of phenotypic mutatives associated with BRCAI status should improve risk prediction in <u>Breast Cancer</u> .					
	transports		CHEK2	0		2010/12/06	SOURCE	PAS	0	0
	transported by		CHK2	0						
	phosphorylates		COLON CANCER	0		2010/11/30	SOURCE	PAS	0	0
	phosphorylated by		COLORECTAL CANCER	Ø					Ø	0
	methylated by		CSA	Q	Little is known about the transcriptomic profile of	2010/11/30	SOURCE	PAS	n	0

イロト イヨト イヨト イヨト 三日

Outlook & conclusion

Acknowledgements

Mathias C. Walter Prof. Dr. Hans-Werner Mewes ... and many others ...

イロト イポト イヨト イヨト ヨー わへで

Thank you for your attention!

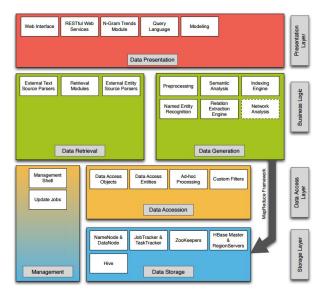
References and sources available at

https://github.com/ulikoehler/Bachelor https://github.com/ulikoehler/Translatron https://github.com/ulikoehler/YakDB

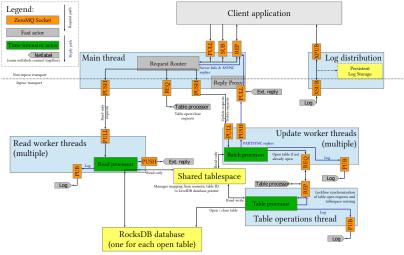
Thesis & talk available at http://techoverflow.net Contact: ukoehler@techoverflow.net

Questions?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○ ○


Image sources

http://www.case.edu/med/nutrition/images/pubmed-logo.jpg http://mips.helmholtz-muenchen.de/excerbt http://www.raspberrypi.org/blog/raspberry-pi-2-on-sale/ https://www.raspberrypi.org/blog/raspberry-pi-2-on-sale/ http://www.depts.ttu.edu/hpcc/


Wachinger: Next Generation Knowledge Extraction from Biomedical Literature with Semantic Big Data Approaches

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Excerbt architecture

YakDB architecture

RocksDB database objects automatically synchronize requests

イロト イヨト イヨト イヨト 二日

Translatron demo

Translatron Q Search Dentities

DISC1

Documents:

Soares, Diresh C., Carlyle, Becky C., Bradshaw, Nicholas J. & Portocus, David J. DISC1: Structure, Function, and Therapeutic Potential for Major Mental Illness AGS Chem Neurosci,

NER Show full

イロト 不同 とくほと 不良とう ほ

DOI

DISC1 function thus intersects in a complex manner with both of these therapeutically relevant signaling pathways (Figure 4), being modulated through NMDA receptor signaling and in turn affecting the surface expression of both dopaminergic and glutamatergic receptors. Excitingly, DISC1 and its complex may therefore provide an opening for therapeutic modulation of either or both dopaminergic and glutamatergic receptor function and signaling.

DISC1 therapeutic pathways. Neurologically relevant cellular signaling pathways influenced by DISC1 are shown. Green arrows depict individue mazymes, or otherwise enhancement of the target functions (for example, by leading to urgeplated transcription of the protein). Red arrows depict individue or otherwise downey adjust. Black straws depict individue of the target functions (for example, by leading to urgeplated transcription of the protein). Red arrows depict individue or otherwise downey adjust. Black straws depict individue of the target functions of the above categories or that are not yet fully understood. Data on the role of DISC1 in these pathways was taken from refs (9 – 11, 36, 37, 70, 71, 98, 131, 158, and 200). Dashed arrows indicate indirect effects. Refer Above(ators for further details).