
LUDWIGMAXIMILIANSUNIVERSITÄT
TECHNISCHE UNIVERSITÄT MÜNCHEN

Helmholtz Zentrum München
Institut für Bioinformatik und Systembiologie

Bachelorarbeit
in Bioinformatik

Algorithms for resource-constrained
domain-specific knowledge management

Ulrich Josef Stefan Köhler

Aufgabensteller: Prof. Dr. Hans-Werner Mewes
Betreuer: Mathias C. Walter
Abgabedatum: 15.05.2015

Ich versichere, dass ich diese Bachelorarbeit
selbständig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

15.05.2015
Ulrich Josef Stefan Köhler

Acknowledgements

Neither writing this thesis nor developing Translatron would have been possible without
support from the people around me – nonetheless it is only possible to give particular
mention to a small subset of them.

First and foremost, I’d like to express my gratitude to my supervisors Mathias Walter
and Hans-Werner Mewes who provided me not only with valuable advice whenever nee-
ded, but also with useful expertise regarding technical properties of my developments.

Particular thanks also go to the original authors of Excerbt, most notably Benedikt
Wachinger and Volker Stümpflen who provided me with the unique opportunity of assis-
ting them in developing Excerbt while still being a pupil. Furthermore, I thank Phillip
Blohm, Nicro Gross, Sebastian Voßberg, Erik Pfeiffenberger, Syeda Tanzeem H. Charu
and Tobias Sander who all exchanged with me the knowledge that was required to per-
form a complete redesign of the system.

Last but not least, sincere thanks go to my family, my friends and fellow students who
continuously supported and encouraged me throughout the development and writing of
this thesis.

Abstract

A central problem in computational biology is how to extract information from ever-
growing amounts of data. Not only is there a huge amount of laboratory data requiring
processing, one also has to deal with millions of biomedical publications – especially in
highly active areas of research.

While currently available text mining technology facilitates large-scale exploration
of textual data, no solution is currently available allowing one to analyze only a small
corpus of scientific textual information without having to rely on complex frameworks
that are hard to use without a dedicated cluster of servers. Therefore, these technologies
are virtually inapplicable for field use or tasks where only a comparatively small domain-
specific corpus needs to be queried, especially on devices with limited amounts of resources.
Moreover, most available text mining packages are built for use cases which are either too
general for specific biological tasks (e. g. Google) or use methods only being applicable for
specific areas of research.

This thesis presents algorithms and a proof-of-concept reference implementation named
“Translatron” using a highly customizable and portable approach to text mining that is
optimized for resource-constrained standalone devices running domain-specific algorithms
with small to medium-sized datasets.

Zusammenfassung

Ein zentrales Problem in der Bioinformatik ist die Extraktion von Informationen aus
ständig wachsenden Datenmengen. Ständig werden große Mengen an Labordaten gene-
riert, die der Verarbeitung bedürfen. Zusätzlich müssen auch Millionen biomedizinischer
Publikationen müssen gelesen und verstanden werden – insbesondere in hochaktiven For-
schungsbereichen.

Während derzeit verfügbare Text Mining-Technologien Datenexploration im großen
Ausmaß mittels großer Rechencluster ermöglicht, gibt es derzeit keine Lösung für die Ana-
lyse von kleineren Korpora wissenschaftlicher Textdaten, die ohne komplexe Frameworks
auskommt. Daher sind diese Technologien nahezu nicht im Feldeinsatz oder für Aufgaben
anwendbar, bei welchen nur ein vergleichsweise kleiner, domänenspezifischer Korpus ab-
gefragt werden soll – insbesondere auf Geräten, auf denen nur limitierte Ressourcen zur
Verfügung stehen. Darüber hinaus sind die meisten Text Mining-Pakete für Anwendungs-
fälle entwickelt, die entweder zu generell für spezifische biologische Aufgabenstellungen
sind (z. B. Google) oder Methoden verwenden, die nur in einem speziellen Bereich der
Forschung anwendbar sind.

Diese Arbeit präsentiert Algorithmen und eine Machbarkeitsstudie in Form einer Refe-
renzimplementierung genannt „Translatron“, die eine individuell anpassbare und portable
Herangehensweise an das Text Mining verwendet. Translatron ist optimiert für autono-
me Geräte mit begrenztem Speicherplatz, auf denen domänenspezifische Algorithmen mit
kleinen bis mittelgroßen Datensätzen implementiert sind.

Contents

1 Introduction 1

2 Results 5
2.1 Translatron’s architecture . 6
2.2 Autonomous text mining software - an introductory use case 8
2.3 Requirements for resource-constrained text mining 9

2.3.1 Domain-specific text mining . 9
2.3.2 Types of resource constraints . 10
2.3.3 YakDB - a database for inverted index applications 13
2.3.4 Clustered architecture . 21
2.3.5 Redundancy . 25
2.3.6 MapReduce & distributed data processing capability 30
2.3.7 Extensibility . 33
2.3.8 Named Entity Recognition . 35

2.4 Algorithms for resource-efficient text mining . 41
2.4.1 PRIMORDIAL indexing . 41
2.4.2 PRAISER merge operator . 45
2.4.3 PERSIST single token indices . 46
2.4.4 PRESIDE prefix search . 48
2.4.5 PRO-PANE result ordering . 50
2.4.6 FiT-NESS multi-token NER . 52
2.4.7 WESTSIDE client interface . 54

3 Summary & Outlook 57
3.1 Limitations of Translatron . 57

3.1.1 Missing semantic features . 57
3.1.2 Cluster use of Translatron . 58
3.1.3 Lower memory thresholds . 58
3.1.4 Lack of configurability . 59
3.1.5 Limited import capability . 60
3.1.6 Limited reindexing support . 61
3.1.7 Platform support . 61

3.2 Future developments . 62

xi

List of Figures 63

Bibliography 64

A YakDB YDF format specification 71

B Open data 72

Chapter 1

Introduction

Nowadays, a major limitation in all fields of life sciences is to process all available data
rather than to acquire more information. Not only does this apply to laboratory data
like genomic sequences or metabolomic information, but also to textual information like
publications or even internal documents of research institutions.

In order to approach the issue of rapidly growing text resources, a significant amount
of research has been performed in computational linguistics: Software which partially
understands the semantics and meaning of natural language text resources is possible
today – supplemented by automatic extraction and organization of information.

The overall trend of the number of publication is clearly visible in figure 1.1 which
shows the growing cumulative number of citations in the MEDLINE corpus. While the
data this figure is based on does not include 2013 and 2014, the quasi-exponential growth
is obvious and thereby proves the need for intelligent software automatically analyzing
this information.

However, currently available text mining systems have only limited understanding
of biomedical texts, leading to high error rates when compared to manual analysis (see
[68]). For specific use cases, specialized algorithms1 have been developed in order to
provide better recognition characteristics – notwithstanding the fact that such algorithms
are hard to integrate in existing text mining systems that only provide a ready-to-use
solution for very narrow use cases.

Moreover, current text mining software is commonly built for analyzing huge text
corpora such as the complete set of PMC2 open access articles. Furthermore, due to legal
restrictions, text mining software can only rarely index a large corpus of non-open-access
papers – particularly if the text mining interface is publicly available3.

No ready-to-use tailored solution is currently available for domain-specific applications:

1for example, ChemSpot [69] for chemical entity recognition
2PubMed Central, see [28]
3Journal subscription agreements frequently do not include the right of indexing or making the deriva-

tive works available to the general public, see e. g. the example agreement available at [17].

1

2 CHAPTER 1. INTRODUCTION

0

10.000.000

20.000.000

30.000.000

40.000.000

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Cumulative number of citations Prediction

Figure 1.1: Cumulative number of citations in MEDLINE as shown in [78, figure 1.1]

If one intends to analyze only a comparatively small corpus of data – for instance, scientific
publications only about a single bacterium plus a collection of other data sources like
laboratory reports in heterogeneous formats – the user either has to resort to unspecific,
non-specialized systems facilitating simple full-text search in arbitrary documents or adapt
a complex text mining system with custom algorithms.

When using existing systems like Excerbt (see [27] and [78]), not only does the complex
high-throughput-oriented architecture lead to difficulties in writing code for importing the
documents in question, the system also has significant inherent overheads that require it
to run on a high-performance server cluster4 . Even imports of single documents take up
to several hours due to this overhead5.

Together with the immense administration overhead inherently present in complex

4Excerbt 2.0 used 20 servers with a total of 240 GiB of RAM and 160 TiB of harddrive disk space,
see [78, section 4.2.1].

5The timeframe of performing a data update in the original Excerbt version has been outlined in [78,
section 4.1]. However, from my previous experience as an Excerbt developer, I know that even computing
jobs that did not perform any operation at all took about 30 minutes in the production configuration as
present in early 2013.

CHAPTER 1. INTRODUCTION 3

multi-tiered architectures6 this leads to the hypothesis that it would require months to
years to setup a customized instance of Excerbt – even for a single application.

Although text mining is an important tool for modern computational biology7, its
practical applicability is confined by complex software, its inherent focus on large-scale
applications and hardware requirements that can’t be fulfilled in a small application-
specific setup or for a application that requires using the system autonomously without
internet connection.

Moreover, as the number of specialized algorithms for text mining application grows
continuously, next-generation text mining systems should allow highly customizable mod-
ules – for example, users in the area of chemoinformatics should be able to use application-
specific ontologies8 with a focus on chemical compounds and structural properties, while
another user performing research in algorithmics might need specialized preprocessing
that can properly interpret mathematical terminology or even formulas.

What would be required in order to work around these issues is a set of algorithms and
tools that can be used in a standalone manner for text mining in “resource-constrained”
environments. This means that commodity hardware like notebooks – or even mobile
devices like tablets and smartphones – can be used in place of dedicated server clusters,
allowing not only existing hardware being used for this purpose but also facilitating the
use of text mining technology where before this was not possible due to the high cost and
maintenance effort required to run a cluster.

6During development of Excerbt, the cluster software frequently required full restarts and other main-
tenance due to unexpected job failures. At the date of writing this thesis, the public Excerbt service [18]
is unavailable due to maintenance issues.

7A good overview about practical uses in life sciences in listed in [42].
8A database or resource of biological entities, see [78, section 2.5.2].

4 CHAPTER 1. INTRODUCTION

For this thesis, based on my previous experience in engineering the Excerbt system
I developed the following seven algorithms to improve search indexing, named entity
recognition and client communication for resource-constrained applications:

• PRIMORDIAL - Performant Record Indexing using Merge Operators with Runtime-
Delayed Interpretation of Accumulated List operations, an algorithm for lazy index-
ing leveraging merge operators, a special feature of key-value databases, for efficient
inverted index generation (see section 2.4.1)

• PRAISER - Partial Reindexing Algorithm with In-place Stable Elimination of Re-
dundancy, a merge operator for use within the PRIMORDIAL algorithm that ex-
hibits properties allowing stable incremental and partial index generation and fea-
turing automatic removal of duplicate results (see section 2.4.2)

• PERSIST - Performant Extraction of Results by Set Intersection of Single-Token-
indices, a concept that allows to save the majority of space occupied by inverted
search indices by avoiding to create separate index entries for multi-token entries
(see section 2.4.3)

• PRESIDE - Prefix-based REaltime Search by Iteration of Database Entries, a
schema that allows performant real-time searching for token prefixes in key-value
databases that support sequential iteration (see section 2.4.4)

• PRO-PANE - Prefix-based Result Ordering with Programmable Antecedence of End
Results, a key-value database layout augmentation that allows query-level-selectable
dynamic result reordering, thereby facilitaing displaying of more relevant search
results before less important ones (see section 2.4.5)

• FiT-NESS - FIrst-Token-based Named Entity Selection Scheme, an optimization
of the NER algorithm used by Excerbt that achieves O(1) index space consumption
in respect to the number of tokens in the indexed entities (see section 2.4.6)

• WESTSIDE - WEbSocket-based STateful Sequentialization of Incoming Data En-
velopes, an algorithm facilitating fast bidirectional browser-to-server communication
that allows using a simple sequential programming model in the server while still
maintaining performance benefits of an asynchronous system (see section 2.4.7)

These algorithms have been implemented in a proof-of-concept tool called Transla-
tron (TRANSLAtional bioinformatics9 Tool with Realtime ONtology). Its web-focused
architecture allows out-of-the box indexing and real-time search in both documents and
ontologies while facilitating high extensibility and integration of third-party algorithms
by using a lightweight Python-based implementation.

9see [33]

Chapter 2

Results

If you can land on the moon using a pocket calculator, why
can’t you do text mining using only your smartphone?

As outlined in chapter 1 Translatron has been designed for processing of small to
medium text corpora. The new version of Excerbt1, on the other hand, has been designed
for processing the entirety of available text sources2, not only including open access sources
but also abstracts from non-open-access papers listed in PubMed whose abstracts are
available via the MEDLINE service (see [47]).

Besides the targeted use cases being different from Excerbt, the user interface (UI)
uses an approach called real-time search. The search results are displayed directly while
typing the search term without the need to press enter, enabling the user to successively
refine the search terms based on the observed results. Furthermore, the support for named
entity recognition not only allows users to find arbitrary entities in search results but also
facilitates a direct crosslinking to additional information about said entity (see section
2.3.8).

Python has been selected as a programming language for Translatron because of its
popularity and ease of use (see [76], [50] and [70]). As a scripting language, it allows easy
modification without the requirement of explicitly rebuilding the software, yet facilitating
clean, high-level code that can easily be understood even with little previous experience.

Though it can be argued that Python is slow and might be more memory-intensive
when compared to compiled languages like C++, Translatron is not optimized for pure exe-
cution speed but for inherent simplicity and the operation on resource-constrained devices.
Should an improved performance be required, one solution would be to use alternative,

1Described in [78], as opposed to the “old Excerbt” initially published in [27].
2While according to [78] only MEDLINE and PMC are currently imported in the current production

version of Excerbt, the system is not inherently limited to those corpora.

5

6 CHAPTER 2. RESULTS

Just-in-time-Compiler3 (JIT) based Python implementations like PyPy (see [30]). In
most other cases, YakDB (the database used by Translatron as discussed in section 2.3.3)
provides sufficient performance benefits due to its highly efficient C++ implementation.

2.1 Translatron’s architecture

UniProt

. . .

Entity import Entity indexing

PMC

. . .

Document import Document indexing

Database Search engine

Figure 2.1: Translatron’s basic data import workflow

Similar to Excerbt, Translatron is built on the idea of a basic import – indexing – search
workflow. Besides importing documents, entity import (also called ontology import, see
[78]) is also supported, though not required if a specific application does not depend on
using the named entity recognition discussed in section 2.3.8. A general overview of the
data import workflow is depicted in figure 2.1.

Although details of this architecture will be discussed later in this thesis, just like
Excerbt Translatron is not a fully standalone program but consists of a stack of tool and
libraries. An overview of the design is given in figure 2.2. In this diagram, it is obvious
that the “NER / Ontology / Entity” indexing block is topographically equivalent to the
“Text corpus / Full text search / Document indexing” block. This is not due to the
simplified nature of the diagram but instead reflects the design’s reality, because both
blocks use exactly the same entity storage and indexing backend, thereby reducing the
complexity of Translatron’s codebase.

On the client-side, Translatron uses a purely static web interface (i. e. no part of the
interface is dynamically generated by the server), making it easier to adapt to custom
needs. An AngularJS (see [1] and [35])-based frontend easily allows augmenting the
interface with additional features without explicitly having to deal with the details of the

3a compiler that is capable of runtime interpretation, but uses pre-compilation and runtime optimiza-
tion in order to gain a performance benefit over pure runtime interpreters.

CHAPTER 2. RESULTS 7

Browser client

Translatron

Webserver / Websocket interface

Full-text search Text Corpus NER Ontology

Document indexing Entity indexing

YakDB

ØMQ

HTTP/Websockets

Figure 2.2: Translatron architectural overview diagram (simplified)

client-server communication and user interface rendering. The web interface is served via
an embedded HTTP webserver – the client-server communication, on the other hand, is
performed via WebSockets as described in section 2.4.7.

An example search with Translatron is shown in figure 2.3 (all search results besides
the first one are hidden). While the “NER” button alongside each search result triggers
the named entity recognition feature as discussed in section 2.3.8, the “Show full” button
shows the full stored text of the document while by default only the paragraphs around
the search hit are shown.

Translatron also allows direct searching for entities as shown in figure 2.9 on page 40
and discussed in detail in section 2.3.8.

8 CHAPTER 2. RESULTS

Figure 2.3: Searching for “DISC1” in Translatron (screenshot)

2.2 Autonomous text mining software - an introduc-
tory use case

While text mining without access to fast internet and virtually unlimited hardware re-
sources seems to be an unrealistic use case for most users that only intend to operate
the system from their office, it is entirely realistic to see an application of text mining in
disaster relief, e. g. after earthquakes. While autonomous text mining systems certainly
will only solve a very small subset of the issues encountered by disaster relief personnel,
they can be a potentially life-saving tool especially in the context of epidemiology-oriented
microbiology. For example, Feldstein and Weiss note in [39] regarding patients treated in
a Cambodian refugee camp:

“The availability of bacterial cultures could have eliminated the use of multiple
and/or broad-spectrum antibiotics in treating most infections” [39, discussion]

While one could argue that bacterial cultures would have helped the authors more
than a text mining tool, the publication refers to events dating back to 1980 when no
text mining technology even remotely comparable to today’s software was available. In
fact, text mining may provide additional information that is especially useful when the
patient’s condition is unclear or ambiguous – the same reason that led Feldstein et al.
to the assertion that bacterial cultures would help in diagnostics and facilitate a better
treatment.

Consider the following example: A patient is admitted to a remote disaster relief hos-
pital in a third-world country after a large earthquake. As the communication systems
collapsed, only limited satellite-based internet is available for the medical personnel. Said
patient’s symptoms show clear signs of bacterial infection due to an open fracture suf-
fered from the earthquake. However, based on the symptoms, the doctor – who has not

CHAPTER 2. RESULTS 9

received specialized training in infectiology – doesn’t know exactly what bacterium might
be causing the infection. As the open fracture requires urgent surgery, antibiotics need
to be administered immediately. There are many other patients waiting, therefore the
doctor has only limited time available for research.

Using Translatron – which is running autonomously on a smartphone – the doctor
searches for the patient’s symptoms in a microbiology/infectiology-specific text corpus
based on MEDLINE and PMC. Translatron finds [48], associating the patient’s symptoms
to Antrax which is caused by Bacillus anthracis. Based on this information, the doctor
is not only able to administer suitable narrow spectrum antibiotics but also evaluate
possible epidemiological consequences of the case: Fellow doctors are informed of typical
symptoms and suitable methods of decontamination – official authorities can also be
involved immediately and take precautionary measures to avoid endemic behavior.

This scenario would not be possible with a system like Excerbt, as fast internet is
frequently not available in disaster relief scenarios and a local cluster setup is logistically
difficult and time-consuming – especially if no dry, clean building with sufficient continu-
ous power is available to house multiple servers.

2.3 Requirements for resource-constrained text min-
ing

Due to the different targeted application sets, there are vastly different technological
requirements to Translatron as there are to Excerbt. In the following sections the require-
ments and implementations of Translatron and Excerbt will be compared, focusing on the
aspects that seem most relevant for Translatron’s use case.

Excerbt has been selected as a base for comparison not only because the development of
YakDB and Translatron initially started as a complete redesign of the Excerbt topology
and only later focused on specialized text mining applications – but also, because as
being a core developer of the new Excerbt system for more than two years I have access
to significantly more details regarding the system design than for other, comparable text
mining systems. While many publication tend to hide negative over positive results (see
[38]), I believe that for a complete redesign information about concepts that did not work
out as expected are equally important as knowledge about the approaches that succeeded
– to me however, this information is only available about Excerbt, making it an ideal
candidate for comparison.

2.3.1 Domain-specific text mining
As already discussed briefly in chapter 1, Translatron – in contrast to Excerbt and many
of its competitors – is not designed for large-scale “big data” text mining. This means
that while Excerbt has been designed as a large, scalable system that not only supports

10 CHAPTER 2. RESULTS

processing the whole PMC corpus plus MEDLINE but can also easily scaled to support
even larger corpora like the entirety of newspapers or English literature.

While the generic approach of scalability at first seems appropriate, it introduces
a significant overhead not only in software complexity but also in hardware, rendering
the Excerbt architecture virtually useless for heavily resource-constrained devices like
smartphones (also see section 2.3.4).

Also, the value of searching huge text corpora is highly disputable: While Excerbt is
designed for a single installation to cover all possible use cases, most users only intend
to search in a “domain-specific” subset4 of the available text corpora. For example, a
microbiologist researching virulence of Coxiella burnetii is commonly only interested in
a subset of the publications related to microbiolog. Giving that user access to specifics
about neurological damage due to Alzheimer’s disease in mice will rarely be useful.

Moreover, the corpus will likely not be static: While new papers or even internal re-
ports might be added continuously, the user might also remove papers that seem unreliable
or are not any more considered relevant for the specific use case. Furthermore, it is pos-
sible that some use cases will require either a parallel deployment5 or a quick switching6

of multiple corpora and ontologies: Besides using a Coxiella burnetii-specific deployment,
said biologist might have specific queries that require a microbiology-specific corpus (in-
cluding, but not being limited to Coxiella burnetii) that can be used, for example, to
find similarities between Coxiella strains and other bacteria or to include host-specific
information to investigate the host-pathogen interaction

By providing a customizable domain-specific system that can run locally without the
need for complex setup procedures, a multitude of use cases without specific restriction
can be covered by Translatron. Although there are no hard boundaries on how large
Translatron-indexed corpora can get, there are circumstances where extremely large text
corpora in Translatron are likely to consume more main memory than available on the
device, thus either crashing the software or rendering it slow (also see 2.3.2). Similar
limitations apply to Excerbt which handles this issue by simply making use of hardware
clusters with an extended amount of main memory.

2.3.2 Types of resource constraints

In chapter 1 we introduced the concept of making next-generation text mining software
run autonomously7 on single devices, even down to mobile handhelds like smartphones

4i. e. a subset covers a distinct set of topics, the “domain”.
5Inherently supported by Translatron, even on the same computer.
6Supported in Translatron using the backup/restore mechanism as discussed in section 2.3.5.
7In the context of this thesis, an autonomous text mining system is defined as a software than can run

both offline and online and on an single computing device (including the device displaying the interface
to the end-user) without any specific constraint on usage scenarios, provided that the data to be analyzed
is available to the system.

CHAPTER 2. RESULTS 11

and tablets. In order to be able to evaluate and compare the capability of Excerbt and
Translatron on those devices, it is required to define and discuss the most important
classes of resource constraints present on off-the-shelf commodity devices:

• Main-memory constrained systems: These devices have a low amount of main
memory, also called RAM (random access memory). While servers like those used by
Excerbt commonly have main memory between 16 and 192 GiB (see [78, figure 4.3]),
commodity hardware often has less than 8 GiB of RAM. Moreover, even modern
handhelds, embedded devices and cheap virtual servers have less than 2 GiB of
RAM and even devices with as little as 256 MiB should generally be able to run
Translatron, albeit the performance is expected to be worse when compared to more
powerful computers.

One platform that has received a significant amount of attention in a wide variety of
scientific fields is the Raspberry Pi low-cost embedded Linux system. The Raspberry
Pi is a low-cost (around 25$) single-board computer that only requires a SD card
and an USB power supply to run. Due to its compact form factor and its low price,
multiple Raspberry Pi computers can be used to form a small, low-cost computing
cluster (see e. g. [34]). However, the individual computing nodes of those clusters
have at maximum one gigabyte of main memory8, rendering the platform nearly
unusable for text mining software that consumes multiple gigabytes of memory
even while idle. Although Translatron’s performance is considered to be generally
better on more powerful computers like notebooks, the Raspberry Pi allows cost-
efficient local deployment of a web-based text mining system like Translatron –
the performance penalty inherent to that configuration is considered acceptable for
many applications.

• Storage space constrained systems: Even in server-based systems like the old
Excerbt, there are issues with disk space running out due to ever-growing amounts
of data (see [78, section 4.2.1]). While the new Excerbt software stack has been
specifically designed to have more than 100 TiB of storage available to the applica-
tion and to be easily scalable (see section 2.3.4), handheld devices only encompass
storage space of a few tens of gigabytes, with only a few gigabytes being available
to the application. Although smaller domain-specific corpora (when compared to a
full PMC/MEDLINE corpus as in Excerbt) automatically lead to significantly de-
creased space consumption, without specialized algorithms, the available disk space
might still be insufficient.

• CPU-time constrained systems: As a constraint, this constellation is rather
rare as there is no inherently limited amount of CPU time as it is the case for main
memory or storage space. In cloud computing, there are scenarios where the amount

8for the new model “Raspberry Pi 2”, the old version only having 512 megabytes.

12 CHAPTER 2. RESULTS

of CPU time consumed indirectly leads to higher costs (see for example the Amazon
AWS EC2 price table [19]). Due to the tradeoff of simplicity versus optimization and
the requirement that Translatron should be easily extensible, it is not optimized for
pure execution speed – notwithstanding the fact that many aspects of Translatron
like the real-time search would not be possible without optimization at some level.

• Network-constrained systems: The systems affected by this class of constraint
are mainly mobile handheld devices or embedded boards like the Raspberry Pi.
Those systems have either a slower maximum network connectivity than a reference
system and/or exhibit higher latencies. For example, a smartphone that is connected
to a wireless 802.11n network has a theoretical maximum speed of 300 MBit/s (with
2 MIMO antennas on both endpoints, see [15]). Although the evaluation of wireless
network performance is beyond the scope of this thesis, in practice lower speeds and
worse latencies are not only achieved due to physical distance between smartphone
and access point but also due to the fact that the wireless spectrum is often shared
between multiple devices and networks.

Although no authoritative tests have been performed, it is expected that internal
network performance is a critical factor for clustered systems like Excerbt. Even
more important to the end user is the network connection from the device displaying
the user interface to the server instance: A high latency in this path will degrade the
performance perceived by the user as the communication poses the bottleneck for
viewing search results. While this is generally not a critical issue for local network
connections, users in rural areas in foreign countries accessing servers available on
the internet will not only experience a slow connection but will also have to deal
with connection errors. A comparable use case is discussed in section 2.2.

Translatron has not been particularly optimized for minimum network utilization –
not because network-constrained systems are considered an irrelevant use case, but
because the core system design of Translatron completely works around this class
of constraints by allowing true offline usage, thereby eliminating network access
altogether during normal operation9.

• Battery-constrained systems: This class applies to handheld devices and note-
books in particular: If there is no permanent power supply available and a text
mining system continuously drains the battery, the system can only be used for
a limited period of time. This is closely tied to CPU usage, network usage and
mass storage device usage, as those are the main factors for power consumption –
especially if the network is only available using wide area wireless networks such as
UMTS.

9Depending on data availability, the input data might need to be downloaded from the internet.

CHAPTER 2. RESULTS 13

It seems likely that in practice the only use case where strict battery constraints are
present are handheld devices that are not continuously connected to a power supply
for portability reasons. Even for use cases as discussed in section 2.2 the medical
equipment is likely to require a steady power source like a generator, possibly also
capable of providing a small amount of power to the computer equipment.

Therefore, Translatron is not specifically optimized for battery constraints. How-
ever, the inherent possibility of true autonomous operation leads to zero required
network traffic, in effect reducing the power consumption by Translatron. Even if
the Translatron server is not running on the local device, the lightweight system
design will lead to reduced resource utilization, effectively reducing the amount of
power being used.

In the context of this thesis, systems that are storage space constrained and/or main-
memory constrained are called space-constrained where no specific differentiation is re-
quired.

In practice, quite often a tradeoff exists between two or more of these constraints: For
example, on a notebook, when optimized for battery-powered field use, there is a tradeoff
between battery life and networking speed. If Ethernet is used as a networking interface,
a 1000 MBit/s network configuration consumes more power than 100 MBit/s mode. For
example, when using the DP83865-EP physical layer transceiver10, it consumes 1.3W11

while the exact same integrated circuit (IC) in 100 MBit/s mode only consumes 0.33W12

(see [14, section 6.10]) – in other words, just by switching the same hardware to 100MBit/s
connectivity instead of 1000 MBit/s Ethernet saves almost 75% of the power consumed
by the device, albeit with 1

10 the maximum throughput rate.
Similar tradeoffs might apply for other pairs of constraints – a common case is to

precompute full search indices in order to speedup searching and thereby trade mass
storage space for speed.

2.3.3 YakDB - a database for inverted index applications
One of the most important factors influencing the performance and ease of use of any text
mining systems is the underlying database software. Barnickel’s original Excerbt used the
PostgreSQL database , which – being a relational database – allows the direct processing
of complex data types in the database itself. However, this approach led to significant
performance issues over several years of runtime (see [78, section 4.5]).

Due to the issues with relational databases, several sets of conceptual alternatives –
commonly called NoSQL – were evaluated during the early stages of the Excerbt redesign.

10An integrated circuit that is used to convert the digital data from the network controller to an
electrical form suitable for transmission via twisted-pair copper cable or fibreoptics and vice versa.

110.43A ∗ 1.8V + 0.19A ∗ 2.5V + 0.01A ∗ 2.5V + 0.01A ∗ 3.3V = 1.307W active current
120.07A ∗ 1.8V + 0.06A ∗ 2.5V + 0.01A ∗ 2.5V + 0.01A ∗ 3.3V = 0.334W active current

14 CHAPTER 2. RESULTS

Different classes of alternatives are discussed in detail in [78, section 2.4] for the Excerbt
use case, detailing the decision process for its system design. Among a multitude of
alternatives, a combined solution based on Hadoop, HBase and ElasticSearch was selected,
although there were several earlier experimental tests with a slightly different database
configuration.

After the Excerbt dissertation was finished in 2013, based on both positive and negative
experiences with the setup as used by Excerbt, I started the system design phase for a
third-generation text mining system that did not exhibit the weaknesses being observable
in Excerbt (some important issue are discussed in section 2.3.4 and section 2.3.5). This
system – which became Translatron almost two years later – required a database as an
alternative to the Hadoop / HBase stack which turned out to be resource-intensive and
difficult to maintain.

By extensive testing, it soon became clear that in order to provide a simple and
extensible yet performant system, a key-value-database – one of the simplest models of a
database that underlies many more complex models – needed to be used, as all databases
with more complex basic models such as document databases could not achieve the desired
performance for all use cases.

However, at this time, only large-scale “big-data” key-value databases like Hadoop/HBase
were available in a ready-to-use package that fulfilled all the requirements and were avail-
able under a suitable license.

Therefore, in early 2014 I started to develop YakDB (Yet Another Key-value DataBase)
– a specialized database built for the increasing demands of modern computational biology
and focused on extremely high read and write speeds even for commodity hardware,
sacrificing neither simplicity nor performance with the main tradeoff of having a simple
key-value database not capable of processing complex objects by itself.

As being observed by comparing YakDB’s architecture in figure 2.4 to Translatron’s
architecture in figure 2.2 on page 7, YakDB’s internal architecture is significantly more
complex than Translatron’s design. This is not actually caused by differences in the gran-
ularity of the schematics but by design: By moving most of the complexity of Translatron
into YakDB, one can improve the simplicity of the high-level Translatron codebase while
still leveraging the performance gained by using the efficient YakDB C++ code. For al-
most any use case of Translatron, it is sufficient to treat YakDB as a black-box database
exhibiting several distinct and unique properties, at most changing some configuration
parameters.

In order to store more complex data types inside YakDB, there are specifications on
how to encode graphs, inverted indices and arbitrary objects in the key-value database
model. YakDB provides implementations for those methods in its Python library which
is closely integrated into Translatron. For storing objects like documents or entities inside
YakDB, Translatron uses the msgpack encoder (see [4]) which provides space-efficient cross-
language serialization for arbitrary objects, thereby facilitating the storage of document-

CHAPTER 2. RESULTS 15

specific properties in entities and documents. Although some common properties like
“id” and “name” are generally used by parts of the software, additional properties can be
added, for example to display protein sequences directly in Translatron. The serialized
value can thereafter be stored in the key-value database. Because YakDB currently does
not provide an optimized solution for indexing specific values in those objects, it is not
being considered a true object database.

Built on RocksDB

RocksDB (see [24]) is a high-speed key-value storage library that is being developed and
actively used by Facebook. It was developed as a major upgrade of the LevelDB (see [21])
project which originated out of Google.

By itself, RocksDB is simply a C++ library providing one key-value13 table which
can be only be accessed by a single process at a time. This is obviously useless for most
applications. Therefore, RocksDB is rarely used as a standalone solution in computational
biology.

YakDB wraps multiple dynamically created instances of RocksDB and provides a
rich network interface on top of them. This approach not only allows fast random ac-
cess read/write operations, but also provides automatic sorting by key, facilitating fast
sequential scans – a feature that can be used in algorithms like PRESIDE (see 2.4.4).

Log-structured merge storage RocksDB internally uses a log-structured merge (LSM)
trees in order to store the database on the disk (see [63]). Thoroughly analyzing database
storage structures exceeds the scope of this thesis – however, a brief introduction is re-
quired in order to be able to analyze performance impacts of LSM-based databases:

For magnetic storage media, not only the raw maximum throughput rate of the device
is limiting the performance, one also needs to take seek times into account. Usage patterns
exhibiting frequent non-sequential accesses cause the hard drive to mechanically move to
the new position. As this process is quite slow (see [62]), performance is severely impacted
by this behavior. This especially impacts random writes as in theory every single write
will cause a seek operation on the hard disk14.

Using LSM trees, the data is not directly written into the database, but instead it
is collected in a log – a purely sequential data structure. Once the log has reached a
pre-configured size, the data is moved to the main tree structure, providing fast read
access times15. While this approach obviously writes all the data at least once more than

13In recent versions, the RocksDB project added support for what [78] calls a “Column-oriented
database.”. This feature has not yet been implemented in YakDB.

14In practice, while write buffering reduces the actual number of seeks for some usage patterns, high-
volume writes still have high seek-induced overhead.

15In this context, no explicit differentiation is made between different trees like B+ trees or Red/Black
trees as a detailed discussion would exceed the scope of this thesis.

16
C

H
A

P
T

E
R

2.
R

E
S
U

L
T

S

Main thread

P
U

L
L

S
U

B

R
E

P

Client application

Request Router
Server Info & ASYNC
replies

Reply Proxy

P
U

L
L

Update worker threads
(multiple)

P
U

L
L

P
U

S
H

P
U

S
H

U
p
d
at

e
re

qu
es

ts
D

el
et

e
re

q
u

es
ts

Batch processor

PARTSYNC replies

R
E

Q

Table operations thread

R
E

P

Shared tablespace

R
ea

d
-o

n
ly

Log distributionX
P

U
B

X
S
U

B

Log

Table processor

 Ext. reply

Read-write

Lockfree synchronization
of table open requests and

tablespace resizing

Read worker threads
(multiple)

Persistent
Log Storage

Open table if not
already open

P
U

S
H

P
U

L
L

R
ea

d
-o

n
ly

re
q
u
es

ts

Read-only

Read processor

Manages mapping from numeric table ID
to LevelDB database pointer

 Ext. reply

RocksDB database
(one for each open table)

Log

PUSH

P
U

B Log

Log

P
U

B

Log

Table processor

R
E

Q

R
E

P

RocksDB database objects automatically synchronize requests

Legend:
ZeroMQ Socket

Fast actor

Time-intensive actor

Log

Log

P
U

B

Netlabel
(same netlabels connect together)

Open / close table

Non-inproc transport

Inproc transport

Table processor
Table open/close

requests

R
eq

u
es

t
p
at

h
R

ep
ly

p
at

h

F
igu

re
2.4:

Y
ak

D
B

tab
le

IO
rou

tin
g

sch
em

atic
(sim

p
lifi

ed
)

CHAPTER 2. RESULTS 17

the classical approach of writing directly to the tree structure, the write access is mainly
sequential, providing a large net performance gain.

Although flash-based media are built so that no mechanical operation needs to take
place even for random access writes, due to the structure of modern flash-based media,
sequential writes are still faster than random ones (see for example the Samsung 830 series
datasheet [8] which lists a sequential maximum write speed of 320 MB/s for the 128 GB
model, while random access 4kb writes reach a maximum at 120 MB/s16).

According to a study by Dell, when using mainly sequential workloads, the perfor-
mance advantage of SSDs does not justify their extra cost (see [16]). While prices for
SSDs are expected to drop in the future due to increased mass-production it can safely
be assumed that for mainly sequential workloads such as LSM databases, HDDs continue
to be a suitable alternative to expensive flash-based storage media at least for the next
years.

Numerically identified tables

Most SQL and NoSQL databases – for instance, PostgreSQL – identify distinct tables by
name (disregarding hierarchical structures like databases). For example, a table called
“relations” might contain Excerbt’s relations. In contrast, YakDB identifies the tables
only by an integral number: For instance, the table 5 might contain PMC documents.

While this might sound like an undesired constraint at first, it not only provides some
level of robustness against typing errors in table names but a rather large performance
gain. Especially in use cases where many millions of database requests are issued by the
clients, in the named-table model every single request causes an evaluation of the table
name unless a stateful model is used17. The YakDB numbered-table model works around
this issue by only sending one 32-bit unsigned table numbers with each request18, which
can be evaluated with virtually no overhead.

ØMQ-based networking layer

The YakDB network interface was built to fulfill four essential requirements:

(1) Cross-language compatibility

(2) Speed, especially low latency also when communicating locally

1630,000 IOPS * 4 kb
17This means that e. g. for one database connection, one table is pre-selected. While this approach is

possible, it adds additional complexity to the system and therefore increases the likelihood of triggering
complex failure modes. Additionally, if the connection performs e. g. writes to alternating tables, this
method creates significant overhead.

18One exception is the multi-table write request which is unimplemented at the time of writing this
thesis, but will allow deterministic-order atomic insertion into multiple tables. In this request, every
single key-value pair to be written contains a table number marker.

18 CHAPTER 2. RESULTS

(3) Simplicity and statelessness19

(4) Selectable write progress feedback20

Based on these criteria, multiple low-level networking libraries were evaluated. Most
systems either supported less than five programming languages (violating (1)) or were
built with a strong focus and reliability and therefore traded performance for reliability.

One framework – a very lightweight transparent communication layer called ZeroMQ
(ØMQ) (see [45] & [12]) stood out:

(1) Supports 46 different languages21

(2) Not only built for latency and throughput comparable to raw socket communication,
but also featuring zero-copy-capable lock-free queues that use a transparent API for
inter-thread & inter-process-communication and communication over the network.
Additionally, the model features fully asynchronous network writes, facilitating the
programming of highly efficient yet simple to use software.

(3) A fully stateless yet fully routable framing model that only requires copying the
content into binary ØMQ frames of arbitrary size

(4) Provides not only a request/reply pattern but also push/pull and publish/subscribe
topology (see [45], also discussed in section 2.3.3)

As shown in figure 2.4, YakDB also uses ØMQ for internal communication. By using
the inter-thread “inproc” mechanism, YakDB can use an actor-based threading model,
facilitating an almost lock-free database design (see [45]). However, a detailed discussion
of these design decisions would exceed the scope of this thesis.

Asynchronicity support

As shown in figure 2.5, YakDB allows both synchronous and asynchronous writes22. Syn-
chronous writes reduce the likelihood of errors for example due to a file system having
reached 100% disk utilization as the client will wait for an error response from the server
before sending more datasets. However, asynchronous writes as shown in figure 2.5 pro-
vide a clear advantage in performance as the client will continue to compute the next
dataset while the database is writing the last value to the disk.

19i. e. no explicit state being tied to a connection to increase the robustness of the system.
20i. e. support for modes where the server reports that a specific write has been performed successfully,

but also for modes where for performance reasons it is only ensured that the network did not fail to
deliver the request to the server.

21as of 2015-05-07, see [13]
22Although technically asynchronous reads are possible, their usage is more complex as the further

execution of the program commonly relies on the result of the read request. Therefore, in this thesis only
asynchronous write requests are discussed.

CHAPTER 2. RESULTS 19

Synchronous writes Compute Transfer

Write

Compute Transfer

Write

t

Asynchronous writes Compute Transfer Compute Transfer Compute Transfer

Write Write

Figure 2.5: Asynchronous vs. synchronous communication (basic principle)

YakDB implements asynchronous writes using the ØMQ push/pull mechanism. While
in the classical request/reply model, the client always expects a response message from
the server, in the push/pull mode ØMQ only makes sure that the message is properly
delivered over the network.

When using asynchronous communication, it needs to be ensured that flow control is
properly enabled in the software. When the client constantly computes new datasets to
write, the computation might be faster than the network or the processing of the data
on the server side. Without flow control, excess data that can’t be processed in time
by subsequent algorithms will be temporarily stored in the main memory – at one point
potentially exceeding the amount of memory available. Therefore, YakDB uses the ØMQ
feature of queue watermarking in order to stop the client from generating new data when a
predefined amount of data is already present in the queues. This mechanism is transparent
to the programmer as in case of overflow the API will simply not return immediately but
instead wait until the queue has free space available again.

Although implemented in many database systems, this approach is particularly ad-
vantageous for main-memory constrained systems as there are tight limits on how much
memory can be consumed by the software at any given time.

Lightweight architecture

Due to its focus on resource-constrained devices, YakDB is built as a lightweight system,
exhibiting the following core properties:

• No installation required: The minimal setup consist of a single executable and a
configuration file in the same directory

• Configuration-free: No explicit configuration required, default configuration enables
all features

20 CHAPTER 2. RESULTS

• Fast startup: Less than 0.1 seconds23 on a standard Linux computer

• Automatic table creation and setup: Once a table is used for the first time, it is
automatically opened using the last table configuration or the configurable global
default

• Tiny codebase of less than 5200 Source Lines of Code (SLOC)24 plus less than 4200
SLOC Python interface code25

Although not all of those properties are relevant for most applications, it is clear that
Translatron’s approach of building a lightweight and thereby extensible is also reflected in
YakDB. These properties are especially useful when extending the system. For a detailed
discussion, refer to section 2.3.7.

Transparent compression

Although efficient algorithms like PERSIST (see section 2.4.3) significantly reduce the
amount of storage space required for any particular setup of Translatron, this reduction
is insufficient for many use cases.

Most of the storage space in a typical installation of Translatron being used to mine
English texts is occupied by chunks of text and not binary data. According to [71] and
[32] the overall entropy26 of English text is low27. This is quite obvious as English has a
very limited character set that is uniformly encoded using e. g. an 8-bit ASCII encoding28

– therefore some of the eight bits are effectively wasted.
There is a multitude of compression algorithms available that can not only utilize the

low entropy of the data stored in the database, but also recurring patterns, for instance
common prefixes in a section of the database. The compression used by Translatron
is transparent, meaning that the compression is not directly observed by the developer
as the database is able to compress/decompress data on the fly and without manual
interaction, thus reducing the total amount of disk space occupied by the Translatron
database without loss of information.

Although the compression has a potentially negative impact on performance especially
for random-access-heavy workloads (as in the worst case, any single access might require

23Maximum of 25 runs where a stop request was sent to the server immediately after startup.
24YakDB standalone server source lines of code, measured using sloccount 2.26.
25Includes inverted index and graph implementations, measured using sloccount 2.26.
26Information content in the context of computer science.
27As the exact entropy depends on the corpus in use and potentially other parameters, this discussion

uses purely comparative terms instead of quantitative values. “low” is defined as entropy where less than
80% of the space occupied by a symbol is used for encoding information.

28For simplicity reasons, the discussion of variable-width encoding methods like UTF-8 including sup-
port for foreign language characters is avoided here.

CHAPTER 2. RESULTS 21

a full block of compressed data to be decompressed), Translatron features selectable com-
pression algorithms reaching from high-compression low-speed algorithms like bzip2 to
real-time algorithms that can only save a small amount of disk space.

At the time of writing this thesis, the following compression algorithms are supported
(see [23]):

• No compression

• bzip2

• Deflate

• Snappy

• LZ4

• LZ4HC

For heavily space-constrained devices it is also possible to extend RocksDB to support
other algorithms: If space is more valuable than computing time, algorithms like LZMA
or PAQ (see [58]) could be used that heavily compress the data and therefore save a
significant amount of space when compared with faster algorithms. In principle, it is also
possible to implement compression on a dedicated hardware platform to facilitate fast
data processing even on low-end devices. However, this approach generally requires a
significant effort and is commonly not cost-effective when compared to a solution where
more powerful hardware like a notebook is used.

For text mining systems, asymmetrical compression algorithms are particularly suit-
able. These methods use more computing time for compression than for decompression
and therefore are especially suited for applications where data is rarely written but fre-
quently read.

2.3.4 Clustered architecture
Clustering in Excerbt

The old version of Excerbt, as published in [27], used only a single server with expensive
and small29, yet fast hard drives ([78, section 4.2.1]).

“These are very expensive disks (compared to regular commodity disks, such
as SATA) and only available in limited storage capacities because of an expo-
nential proportion of storage vs. price.” ([78, section 4.1])

291176 GiB in total, distributed over eight hard drives.

22 CHAPTER 2. RESULTS

Excerbt server

HBase

Hadoop

Server 1 Server 2 Server 3

Figure 2.6: Excerbt architecture (simplified, see [78, section 4.2])

In this version of Excerbt, although the full indexed dataset could fit on the storage,
only few tens of gigabytes remained free on the hard drives of the server. Due to architec-
tural limitations of the PostgreSQL database (which was in use in this version of Excerbt,
see [78, section 4.5]) this led to the impossibility of performing certain operations on the
database, as those operations require a significant amount of temporary storage space on
the hard disk. One of those operations was VACUUM FULL which garbage-collects free
space inside the table storage of the database and therefore increases overall access speed
while decreasing space utilization (see [5]). Due to the inability to perform a VACUUM
FULL run on the Excerbt tables (which would have alleviated most of the performance
issues at that time), both write and access speed were getting increasingly slow, leading
to access times ranging up to multiple hours for more complex queries (see [78, section
4]).

In order to totally avoid these possibilities for the future, during the redesign of Excerbt
we started to use a clustered approach based on the Hadoop ecosystem. This configuration
uses multiple servers working together as a software-controlled unit to provide reliable and
performant services.

As depicted in figure 2.6 (a more detailed architectural diagram of Excerbt is shown
in [78, figure 2.9]), Excerbt mainly accesses the database layer HBase. The underlying
Hadoop framework (see [74]) provides a distributed file system layer. Not only does this
have the advantage of providing scalable storage space that can be expanded by simply
adding an extra server and configuring it to connect to the cluster, it also provides built-in
redundancy. This feature is discussed in detail in section 2.3.5.

CHAPTER 2. RESULTS 23

Clustering in Translatron

This leads to the question why Translatron should not also use a cluster-based architecture
just like Excerbt. There are several reasons why this approach has not been implemented:

• Performance overhead: While clustering often results in a net gain in perfor-
mance due to the inherent ability to distribute work over multiple independent
nodes, it depends on data locality in order to avoid overhead by sending data over
the network. However, in cases where the amount of overall data to be processed is
small and/or only few computing nodes are available, the intrinsic overhead of the
system outweighs its benefits. As Translatron is built for a typical use case with
only a single node, it is obvious that the classic clustering (as present in Excerbt)
will result in an overall decreased performance of the system.

• Increased software complexity: During Development of the new Excerbt imple-
mentation, we encountered several issues due to the complexity of the software stack:
Not only did the system require manual configuration of the Hadoop distributed file
system server, it also required the cluster coordination software ZooKeeper (see [46]).
Although both the configuration process and the software itself is well-documented,
setting up a testing environment on a single notebook took an entire day during
the development cycle and required continuous maintenance. While software like
ElasticSearch provides UDP-based cluster autodiscovery and is therefore more likely
to work fine without configuration, starting multiple independent instances in the
same local network30 causes a cluster to form spontaneously and therefore might
cause inadvertent effects in practical environments:

“Multicast is excellent for development, since you don’t need to do any-
thing. [...]. This ease of use is the exact reason you should disable it
in production. The last thing you want is for nodes to accidentally join
your production network, simply because they received an errant multicast
ping.” ([20])

This leads to the conclusion that cluster configuration either requires significant
amounts of work or is likely to inadvertently trigger complex failure modes that are
difficult to avoid entirely. Said failure modes tend to cause unintuitive behavior and
therefore need to be avoided in Translatron as far as possible.

Moreover, the patent [36] seems to encompass the autodiscovery method used in
ElasticSearch. In order to avoid legal issues for all possible use cases of Translatron,

30Depending on the network configuration, the UDP multicast packets usually don’t cross any router
boundaries.

24 CHAPTER 2. RESULTS

using this method appears to be impossible without qualified legal advice which is
not available at the time of writing this thesis31.

• Translatron supports partial clustering: Although Translatron’s architecture
has been specifically designed to avoid the issues we encountered during the develop-
ment of Excerbt, it still maintains the possibility of distributing tasks like indexing
to multiple nodes. However, in its current form Translatron lacks some implemen-
tation details that would be required to use YakDB’s distributed data processing
capabilities – however, the source code of Translatron is built to facilitate easy
understanding, therefore features like this are easy to add.

See section 3.1.2 for a detailed discussion on how certain clustering features could
be implemented.

31

CHAPTER 2. RESULTS 25

2.3.5 Redundancy
The new Hadoop-based Excerbt architecture provides a built-in feature for data redun-
dancy based on the Hadoop file system [78, section 4.1 & 4.5]. However, in order to be
able to evaluate objectively whether redundancy is required for a specific use case of a
text mining system, we first have to formally define which criteria are relevant to this
decision:

Definition 1 (Criteria for redundancy in text mining systems)
In the context of text mining systems, implementing redundancy is recommended if

at least one of the following conditions apply to the actual scenario:

(1) Only limited downtimes are acceptable

(2) Recomputing the data that is stored in the system from the original sources
consumes more resources than acceptable

(3) Not all original sources are available within a reasonable timeframe

(4) In case of failure of a system-critical component, restoring the system to a fully
operational state consumes more than an acceptable amount of time and/or
resources

The constraints “acceptable” and “limited” need to be evaluated in an application-
specific way.

Redundancy in Excerbt

Excerbt is not officially considered a finished product so criterion (1) (see definition 1)
does not apply32.

Therefore, the decisive factors for Excerbt are (2), (3) and (4): Recomputing all data in
an Excerbt instance encompassing the entire PMC and MEDLINE corpora plus optional
extras requires days to weeks, depending on the current cluster health33.

While (3) does not strictly apply to the Excerbt use case, Excerbt archives all doc-
uments and has built-in mechanisms to be able to track different version of the same

32If (1) would apply, other factors besides hardware failure modes are likely to be limiting to the overall
reliability. This hypothesis is supported by the fact that at the time of writing this thesis, the public
Excerbt service at [18] is unavailable due to software issues.

33Our experience in developing Excerbt showed that the Hadoop/HBase version in use tends to a)
increase arbitrary, apparently acausal error frequency and b) degrade overall performance significantly
if specific usage patterns are applied and the cluster is not restarted frequently. Although the exact
mechanisms involved remain unclear, there are indicators suggesting at least a part of the failure mode
is related to Java memory management issues (also see section 2.3.6). How much a cluster is currently
affected by these effects is defined as the cluster health.

26 CHAPTER 2. RESULTS

document. However, these mechanisms are currently unused as there is no actual applica-
tion for Excerbt requiring exact version tracking. Nonetheless it is possible to integrate
data sources into Excerbt that are not available for re-indexing in the database, e. g.
streaming Twitter messages in real-time directly to the indexer.

Requirement (4) is especially important for most practical use cases, because a limited
amount of administration time is available for any deployment of the software. Therefore,
care is taken during the system design phase so restoring the system in case of hardware
failure is easy or – in the best case – fully automatic. As magnetic hard drives tend to be
the most frequently failing part of server-based clusters (see [66]), most systems are built
to survive one or more concurrently failing hard drives and automatically recover when
said drives are replaced.

Classically, RAID (Redundant Array of Independent Disks) arrays have been used to
provide drive-level redundancy. However, newer designs like Hadoop can utilize JBOD
(Just a bunch of disks) 34 yielding improved performance when compared to RAID (see
[81, chapter 9]) due to optimized allocation algorithms that utilize separate disks by
themselves35.

Hadoop (and thereby Excerbt) uses a replication-based redundancy mechanism that
distributes replicas of data blocks to different servers. This approach theoretically allows
fully automatic recovery even in case of multiple concurrent hard drive failure.

Faster processing due to redundant data Additionally, this method leads to per-
formance benefits for some usage scenarios: As a single block36 is present on multiple
nodes, the likelihood that a computing job run can utilize data locality is proportional to
the number of replicas (also called the “replication factor”), provided that each replica is
placed on a different node.

This is especially important for computing jobs where the processing time of each block
varies significantly from block to block. If initially only local data blocks are processed,
some computing nodes are likely to finish processing their local dataset earlier than others.
In order to minimize the total job duration, those nodes need to fetch additional datasets
from other nodes that have not yet finished processing. For example, consider an Excerbt
instance where an inverted index is being built from PMC documents. Unless the PMC
documents are randomly distributed over the data blocks, some blocks will likely contain
PMC documents with many figures while others will encompass documents with fewer
figures and more text. As figures are not interpreted by Excerbt but consume a significant
amount of space, the amount of computational work required for building a full inverted
index is significantly higher for the text-heavy PMC documents than for the image-heavy

34Any disk array which is not connected in a RAID configuration.
35[81] therefore recommends to disable RAID for Hadoop servers.
36The term “block” is used in its general meaning here and is not used synonymously to the Hadoop

data block as defined in [81].

CHAPTER 2. RESULTS 27

ones.

If, due to replication, the queued data blocks are already present at one of the available
(i. e. non-occupied) computing nodes, the system’s scheduler can use this node to process
the block without overhead due to data transfer. This effect matters most when the
network is slow compared to the computation. For example, if one megabyte of transferred
data requires one hour of computing time to process, a transfer duration of one second
would only add 1

3600 ≈ 0.03% of overhead.

In text mining software, the most time-intensive jobs like SRL (Semantic Role La-
belling, see [78, section 4.4]) tend to exhibit this asymmetry as their processing time
depends on a variety of heavily variable parameters like sentence length. Therefore, it
can safely be assumed that practical text mining applications will actually exhibit mea-
sureable performance benefits if the replication factor is chosen sufficiently high.

Disk space overhead by replication

Although some asymmetrical workloads profit from a high replication factor, the space
consumed by a data block being replicated across multiple nodes is a significant contri-
bution factor for the high disk space consumption of systems like Excerbt. The overall
space consumed by a single data block can easily shown to be equal to:

S(b) = |b| ∗ r(b) ∀ b ∈ B

where S(b) : total space occupied by data block b
|b| : Size of a single copy of data block b

r(b) : number of replicas = replication factor for block b
B : The set of all data blocks

(2.1)

From equation (2.1) it trivially follows that:

S(b) ∝ r(b) ∀ b ∈ B (2.2)

The key requirement for the proportionality in equation (2.2) is a static replication
factor, i. e. it does not change over time for any single data block. Although dynamic,
i. e. non-constant replication factors are supported by Hadoop, it is not common to have
replication factors changing over time. There are use cases, however, where certain sets
of blocks have a different replication factor than others. For instance, temporary files
containing intermediary results may have a lower replication factor than the main database
as they are comparatively easy to recompute.

28 CHAPTER 2. RESULTS

Network overhead in replication

Although asymmetrical workloads might incur less network traffic due to inherently present
data locality (as discussed in section 2.3.5), the process of replication itself has a significant
impact on overall network traffic:

Assuming that blocks are only replicated to physically separate, network-connected
nodes37 and a replication factor of 3, a 100 MiB data block that is present on a single node
generates network traffic in excess of 200 MiB. Additionally, if a node or one of its hard
disks fail, the blocks stored on the defective disk need to be mirrored to another node,
depending on the system hardware causing network traffic of multiple hundred gigabytes.

One important observation is that replication can generally happen asynchronously.
Although the system is only fully redundant if every block is has the full number of replicas
at any given time, the replication takes a significant amount of time, especially if large
amounts of data need to be replicated

It is, however, not necessary to perform these tasks during the computing job that
generates the data blocks. The scheduler can perform both replication and cluster bal-
ancing38 when no job is currently active, thereby using the idle time of the cluster that
would otherwise be wasted.

Redundancy in Translatron

Translatron has a significantly different set of base requirements than Excerbt, therefore
the criteria for redundancy (see definition 1 on page 25) need to be evaluated separately:

As Translatron targets different application-specific use cases, criterion (1) might apply
depending on the application. However, just like in Excerbt, Translatron itself will likely
limit the overall reliability of the system and needs to be tested and modified extensively
to meet guaranteed downtime demands.

In contrast to Excerbt, (2) does generally not apply because Translatron is built for
small to medium sized datasets. Therefore, the amount of time required to recompute the
entire set of data is expected to be several orders of magnitude less than for large-scale
big-data-oriented systems like Excerbt.

Regarding criterion (3), however, the situation is similar to Excerbt: While currently
no data source is implemented that can’t be easily re-downloaded from its original source,
due to the good extensibility (as discussed in section 2.3.7), adding importers for uncom-
mon application-specific data sources is significantly easier when compared to Excerbt.
Therefore, it is easy to conclude that there might be applications that depend on the
guaranteed data retention in Translatron alone.

Likewise, criterion (4) applies also to Translatron – however, due to the significantly
decreased overall amount of data compared to Excerbt, there is a broader variety of solu-

37as opposed e. g. to replications to separate hard disks on the same node.
38Ensuring that every node has approximately the same disk utilization, see [81, section 7].

CHAPTER 2. RESULTS 29

tions available. Not only does the overall simplicity of Translatron reduce the maintenance
overhead but also it is possible to e. g. just perform an incremental backup every two hours.
With Excerbt, on the other hand, the sheer amount of data stored in the system makes
frequent-backup-based approaches virtually impossible to implement.

Based on the observations of section 2.3.5, it is obvious that the replication as imple-
mented in Excerbt is not suitable for the resource-constrained applications targeted by
Translatron:

• In many use cases targeted by Translatron, only a single device commonly built
from commodity hardware is available. This device fulfills the roles of both client
and server. Redundancy generally makes no sense on devices with a single mass
storage device .

• The high disk-space overhead, as discussed in section 2.3.5, is generally not accept-
able for space-constrained devices. That means, the replication factor r(b) must be
set to r(b) = 1, effectively rendering the concept of replication useless while the
overhead and the complexity of the implementation is still left behind.

• In applications where multiple devices are present, network traffic (see section 2.3.5)
is frequently more expensive than in a scenario with a dedicated cluster like Excerbt.
Possible reasons for this include slow network connections (e. g. 100 MBit/s Ethernet
instead of 10 GB/s fiber-optic Ethernet) or limited battery life (even efficient 1,000
MBit/s Ethernet transceivers consume 1.3 Watts (see section 2.3.2).

• The implementation of clustering and redundancy is complex. Hadoop 2.7.0 – the
most recent stable version at the time of writing this thesis – contains about 1.74
million lines of source code39. While Hadoop contains more functionality than just
clustering and replication, large codebases are not only likely to contain more critical
bugs (see [41]), they also limit the extensibility of the system (see also section 2.3.7).
Users extending the system or trying to fix bugs in the code need to understand
significantly more code than a user modifying the compact less than 15000 SLOC
Translatron + YakDB-codebase (also see section 2.3.3).

This leads to the conclusion that a novel, lightweight, overhead-free and completely
optional solution for redundancy needs to be developed. The approach pursued by Transla-
tron is based on YakDB’s YDF dump format, whose binary format is specified in appendix
A. This approach facilitates not only network-capable O(1)-memory highly compressed
streaming backup and restoration, but also employs fully atomic snapshotting – thereby
facilitating live (yet entirely consistent) backups even when write-heavy jobs are running
concurrently. Other aspects of this behavior are discussed in section 2.3.6.

39Measured on a fresh download of the Hadoop 2.7.0 source on 2015-05-05 using sloccount 2.26. Cited
number: Total physical lines of source code (exact value: 1 736 088).

30 CHAPTER 2. RESULTS

Using this mechanism, it is also possible to implement a workflow where the indexing
/ import is performed on a server, whereas the mobile handheld devices the Translatron
webserver runs on only import dumps from this server. Not only does this circumvent the
issue of indexing or import being resource-intensive when compared to just running the
server, it also facilitates a centralized management of datasets.

2.3.6 MapReduce & distributed data processing capability

Figure 2.7: Overview of the MapReduce paradigm as shown in [78, figure 2.5]

MapReduce is a paradigm and algorithm originally developed by Google for their need
to process large quantities of data in a distributed manner. By using three phases (Map,
Sort and Reduce) to execute an algorithm on a dataset, MapReduce can process up to
petabytes of data on large clusters. This is possible because many algorithms can only
be efficiently distributed to a large number of computing nodes if they are split into
Map/Reduce functions 40. An overview of the paradigm is depicted in figure 2.7 where
it is clearly visible that a communication between the nodes only occurs after the map
phase and after the reduce phase.

The capability of Translatron to process data using MapReduce algorithm is closely
tied to YakDB’s capability of processing datasets using MapReduce. When comparing
YakDB to Hadoop, it is immediately obvious that both follow different approaches: While
Hadoop is a full-featured distributed processing framework encompassing its own Appli-
cation Programming Interface (API) for MapReduce, YakDB is a network layer (refer

40A detailed discussion about the reasons for this would exceed the scope of this thesis, refer to [37]
for details.

CHAPTER 2. RESULTS 31

to section 2.3.3) for the underlying RocksDB key-value database – therefore by itself
possessing only very limited data processing capability.

Although it is planned to extend YakDB with a standalone MapReduce layer and
distributed storage capabilities, Translatron – as of writing this thesis – only provides the
capability of distributing a selectable region of the database to an arbitrary number of
clients requesting the data from YakDB while the database guaratees any data block will
be sent to exactly one client. However, it is required to manually start worker processes
on arbitrary nodes on the network. Those workers can simply write theur output data
back to a YakDB table.

This approach allows automatically snapshotting the input dataset using a Copy-On-
Write41 (COW) based mechanism and is also used for generating database backups (refer
to section 2.3.5 for details on the backup mechanism).

By using snapshots for jobs, the system has the inherent advantage that writes to the
input table during the job are not reflected in the input job’s data – for example, if a
job deletes a region of the input table, said section will still be iterated over by the input
table. Though HBase implements a comparable concept called “versions”, it has been
designed to permanently store a number of revision for each value in the database (see
[43, chapter 9]). Although there are different use cases where the timestamped versioning
as implemented in HBase might be useful, the index model in use by Translatron does
not depend on timestamps. Should an application require explicit timestamping, this is
easy to implement by appending the timestamp to the key as stored in YakDB. Although
this means one needs to cleanup old versions manually when some preset version limit
for a single key is reached, avoiding to use optional concepts like versioning decreases the
overall complexity of the system.

Although supporting neither a dedicated MapReduce API nor direct spawning42 of
worker processes on distributed computing nodes increases the effort required to adapt
existing MapReduce algorithms, Translatron generally has an easier programming inter-
face by not forcing developers to use MapReduce for tasks where the paradigm provides
no benefit. This is the case e. g. for very fast, small jobs where the overhead resource
consumption associated with the Hadoop model is large when compared to the overall
resource consumption of the job itself.

One application where the MapReduce implementation as used by Excerbt would not
be applicable is real-time data processing. As even no-operation jobs (i. e. jobs that only
discard the data without performing any operation on it) that run on an empty section
of the database took about 20-30 minutes in the production setup of Excerbt as present
in late 2013, it is obvious that one cannot use Hadoop’s MapReduce for real-time data
processing.

41The snapshot does not cause a full copy of the database, instead the data at the time of taking the
snapshot is kept until the snapshot is destroyed, while newer data that would overwrite the snapshotted
data is logged separately and merged on snapshot destruction.

42The process of starting worker processes on nodes in a cluster context

32 CHAPTER 2. RESULTS

Although one could argue that newer version of Hadoop and HBase could significantly
improve this behavior, Hadoop has to make more tradeoffs for other applications due to
its complexity and multitude of features. This reduces the likelihood that any particular
set of performance issues will be resolved completely, as the solution might impact other
applications negatively or destroy compatibility. Additionally, Java-based software has in-
herent lower boundaries for efficiency: As Hadoop spawns worker processes as completely
new Java processes, these first have to interpret large bytecode libraries in order to be
able to communicate with the Hadoop ecosystem and run the MapReduce code.

Although there is continuously ongoing research on the optimization of JVM (Java Vir-
tual Machine) based architectures (see for example [49]), the garbage-collection43 based
memory model of Java has frequently exhibited high resource consumption for some
MapReduce jobs implemented in Excerbt44.

The memory issues became especially apparent if one job created a large amount of
intermediary objects. If a large number of unused small objects in memory are not rapidly
discarded, they will not only consume memory for an extended amount of time but also
create additional work for the garbage collector.

Obviously, even the possibility of having large memory overhead significantly reduces
the applicability of the Hadoop architecture for resource-constrained devices. The YakDB
/ Translatron stack was designed specifically to alleviate the impact caused by the general
problem of memory overhead and does not use the JVM as a basis for its stack.

Overhead-free programmable data processing

Though not implemented at the time of writing this thesis, there are plans of directly
supporting soft real-time data processing in YakDB by utilizing the LLVM framework
(Low-Level Virtual Machine, see [52]), acting as a JIT compiler to run user-defined code.
This allows virtually overhead-free processing as data that is read from the database can
be passed directly to the user-defined code without first sending it over the network.

Even if the LLVM data processing mechanism is not used, YakDB provides inherently
improved communication efficiency by using Unix Domain Sockets as opposed to TCP
connections when both the search server45 and the database run on the same computer.
From the benchmark data published by Wright et al. in [82] it can clearly been deduced
that Unix Domain Sockets not only yield higher throughput and exhibit lower latency but
also provide a lower-overhead alternative to local TCP communication.

Although text mining applications only infrequently transmit large amounts of data
and therefore it is unclear whether this performance gain is relevant, especially in the
import- and indexing phases significant traffic is generated between the database and

43A set of algorithms that can purge unused variables from memory.
44For some workloads, multiple gigabytes of memory per node being consumed and multiple tens of

percents of CPU time being utilized have been observed.
45In general, the part of the software that directly communicates with the database.

CHAPTER 2. RESULTS 33

the indexing software. Battery-constrained devices might therefore profit from an overall
lower CPU load and/or faster indexing.

For non-local communication, YakDB is able to use both TCP and Unix Domain
Sockets transparently, facilitating fast and overhead-free local communication while con-
currently allowing networking. Current version of Java do not support Unix Domain
Sockets at all46 (see [22]).

Memory management

Although Java can also be seen as a JIT compiler, it imposes certain restrictions on
the user – for instance, only automated memory collection is supported. LLVM is a
complete redesign that allows to use languages with both manual and automated garbage
collection. The latter option essentially frees the developer from the responsibility of
managing memory in a manual way – thereby reducing the likelihood of memory leaks.
However, depending on the exact garbage collection algorithm in use, some memory usage
patterns can yield extremely high overhead as already outlined in section 2.3.6. Due to the
easier programming approach, however, the development cycle durations using languages
with support for automated memory management are frequently less than when using
low-level languages with manual memory management.

Although manual memory management generally requires more careful development
due to the higher likelihood of memory leaks, a properly written software can leverage
the significantly decreased management overhead not only in CPU time consumed by the
garbage collector but also in memory that is not freed at the earliest possible point in
time.

Based on these observations, it is clear that a flexible system must allow end users
to choose virtually arbitrary programming languages not only for writing new software
extending the system but also for the integration of existing algorithms. Although Hadoop
provides mechanisms like Thrift (see [2]) as an inter-language communication protocol,
those mechanisms introduce additional layers to the software stack and therefore often
incur a significant amount of overhead47.

2.3.7 Extensibility
As discussed in the previous sections, with Translatron targeting a multitude of possible
use cases, it needs to provide the flexibility of being able to not only import custom
data in application-specific formats, but also adapt customized algorithms to the software
without significant effort.

46Adding support via a 3rd party library would introduce more overhead, possibly eliminating the
additional performance gained by using Unix Domain Sockets.

47While there seem to be no authoritative benchmarks, the heavily serialization- an deserialization-
oriented architecture of tools like Thrift sets a lower boundary on the overhead.

34 CHAPTER 2. RESULTS

This requirement also needs to be seen in relation to resource-constrained devices. It
can easily be argued that a system like Excerbt employing five48 distinct and complex soft-
ware components has not only too many complex failure modes limiting the applicability
but also consumes too many resources even to be run on space-constrained devices.

Although Wachinger claims in [78, section 7] that Excerbt can easily be extended,
anyone trying to extend it with additional functionality has to deal not only with the
complexity of the architecture (see [78, section 4.2]) but also with more than 50000 lines
of source code49. While it can be argued that virtually no extension project would require
reading the entire source code, it is likely that due to the complexity and the multi-
layer stack as in use by Excerbt the time required for familiarization with the system is
significant, especially if one has to overcome shortcomings of the system by modifying the
core source code.

Translatron achieves higher extensibility than Excerbt using three core properties:

• Small codebase: Less than 1500 source lines of code50

• Easy-to-understand Python codebase without heavy optimizations that would make
the code hard to maintain

• Focus on features that are required to fulfill its core purpose, rather than imple-
menting any conceivable set of algorithms

Examples where the extensibility facilitated by Translatron can be useful include:

• Use of a custom tokenization function51

• Importing custom text corpora or ontologies or implementing application-specific
import filters

• Using custom coloring of NER search results (see section 2.3.8 for a discussion of the
NER concept and section 2.3.8 for a description of coloring in Translatron’s NER
implementation)

• Implementing a modification of the NER algorithm to find special types of fuzzy
entity matches such as IUPAC identifiers

• Adding support for relation extraction as implemented in Excerbt

• Accessing the WebSocket-based interface (see 2.4.7) programmatically to integrate
Translatron’s NER into a distinct product

48Hadoop, HBase, ZooKeeper, Excerbt & ElasticSearch.
49Measured on a copy of Excerbt’s source code from October 2012 using sloccount 2.26, including both

the core Excerbt repository and the Excerbt webserver repository.
50Measured using sloccount 2.26, not including YakDB source code.
51A function that splits sentences into words or comparable fragments.

CHAPTER 2. RESULTS 35

• Integrating a user interface that allows switching between different domain-specific
corpora or ontologies (see section 2.3.8) with as little as one click.

• Implementing machine-learning based algorithms that automatically import hetero-
geneous content like web resources or papers in the PDF format

• Customizing the stopword list or implementing an algorithm that automatically
determines stopwords based on word semantic role and frequency

2.3.8 Named Entity Recognition
One of the core features of both Excerbt and Translatron is Named Entity Recognition
(NER), a process where names of real-world concepts or objects are recognized to be
present in an arbitrary text. For example, in the sentence “BRCA1 causes breast cancer”,
a NER algorithm could recognize the entity names “BRCA1” and “breast cancer”.

After an entity name has been shown to occur at a specific location in said text, one
can easily associate it to information available about that entity in existing databases and
therefore present augmented information to the user (see [60]).

There are two general approaches to NER algorithms:

Pattern-based NER

If no complete predefined set of entities to search for is available, approaches like machine
learning can be used to recognize entities based on patterns specific e. g. to a class of genes.
Because entities found by pattern-based algorithms can’t immediately be associated to a
specific entity as present in a database, the hits also need to be classified based on exact
match and context (see [60]).

For applications in life sciences this approach is used by systems like ChemSpot (see
[69]) in order to recognize chemical and biochemical entities including those which are not
listed in databases like PubChem (see [79]).

Dictionary-oriented NER

While pattern-based approaches allow recognizing hits not being present in any database,
it is difficult to associate previously known information with pattern-based hits because
the relation to existing database entries is either unknown or no such database entry exists
at all.

Additionally, using fuzzy matching or machine-learning approaches for entity recog-
nition introduces additional uncertainties. While false negative hits can’t generally be
avoided in NER applications due to factors like spelling discrepancies, semantic ambigui-
ties or literal errors, fuzzy NER algorithms also introduce comparatively high probabilities
for false positives ([53] provides exemplary benchmarks of different implementations).

36 CHAPTER 2. RESULTS

Many applications only require recognition of entities like genes or proteins, for which
large databases are available. For instance, UniProt (see [75]) provides a comprehensive
database for proteins including potential cross-references if available.

By indexing protein names and aliases from those databases, one can easily identify
matches by just comparing entity names to the tokens present in the text.

As outlined by Wachinger in [78, section 4.3], Excerbt uses dictionary-oriented NER ap-
proach using multiple different databases as entity sources (as listed in [78, table 4.3]). In
addition to Translatron’s scope, EXCERBT also performs relation extraction and there-
fore applies the NER to Predicate-Argument-Structures (PAS, see [78, section 2.5.4])
structures instead of to splitted sentences. Translatron only performs NER on the sen-
tence level (refer to [78, figure 4.5]) without evaluating SRL information. While this
obviously does not allow direct relation extraction, it avoids slow SRL runs while keeping
the system design simple to facilitate high extensibility (also see section 3.1.1).

Search modes

While many entity types like genes and proteins require52 exact, case-sensitive search,
some entities like MeSH (Medical subject headings, see [55]) terms require a case-insensitive
search mode.

For example, both variants “prion diseases” and “Prion diseases” should be associated
to the corresponding MeSH entry when found in the text, whereas “BRCA1” but not
“brca1” should be associated to the corresponding gene as the latter one is not generally
considered a valid notation for the standardized gene identifier.

Additionally, tools like Excerbt also supports other search types like stemmed indexing
(see [78, section 4.3 & section 4.3.1]). These functions are applied to both the search term
and the corpus and therefore allow to alias between natural language variants like “disease”
and “diseases”, i. e. for certain search types. However, as its name suggests, stemming
reduces every word to its stem and therefore might not differentiate between notations
with semantically different meaning such as “disease” and “diseased” (see [78, section
4.3]).

Furthermore, as described by Porter in [67, section 3], stemmers introduce errors due
to over-stemming and mis-stemming which can only be solved by using dictionaries to
account for special words that need to be stemmed in a certain way.

In order to solve some of the errors introduced by pure stemming methods, Excerbt
uses a custom inflection algorithm that reduces words to their base form instead of their
stem (see [78, section 4.3, page 79]).

The BANNER system (see [53]) also uses an extended stemming algorithm called
lemmatization as introduced in [77]. [53, section 3] describes it as

52The requirement depends on the application, but in its standard configuration, Translatron uses
Excerbt’s model of search types, see [78, section 4.5, table 4.1].

CHAPTER 2. RESULTS 37

“[...] which is similar in purpose [to stemming] except that words are converted
into their base form instead of simply removing the suffix.”

which is remarkably similar to the description of inflection in [78, section 4.3]:

“An inflector simply reduces every word to its base form instead of the word
stem.”

In the literature, the term lemmatization seems to be used more often in the com-
putation linguistics context (see e. g. [56], [65] or [54]), whereas inflection is more often
used as a property of certain linguistical forms (e. g. “inflected”) languages (for instance
in “language with rich inflection”, see [25]).

Based on [59, section 2.2.4] this leads to the conclusion that inflection is indeed re-
ferring to the opposite process – variating a word based on its lemma or stem – whereas
lemmatization is the correct term for the base concept of the Excerbt NER search mode.

Although it is likely that subtle differences exist between the Excerbt inflector and
previous work in lemmatization algorithms, systems like Excerbt could profit from the
integration of improved search modes.

NER in Excerbt and Translatron

Excerbt implements (see [78, section 4.3.1]) two different forms of named entity recogni-
tion:

• Sentence token index (STI) based NER where entities are searched in an index of
documents, see [78, section 4.3])

• Percolating NER, where fragments of documents are searched in an index of entities,
see [78, section 4.3.1]

It is obvious that when incrementally adding a single document to the database, the
STI-based approach requires a full re-run of the named entity recognition software. This
is the case because the newly added document might add new search results for the
entities53, thereby significantly increasing the overhead when the text corpus is not static.
Additionally, during the earlier stages of development of the new Excerbt, we faced the
challenge that for frequently-mentioned entities like BRCA1 the search software consumed
large amounts of main memory due to the fact that many search engine libraries like Katta
(see [3]) are based on the assumption that a only a small subset of a search results is
actually used and will therefore fit into memory. However, in the STI NER, a potentially
large list of documents is returned when searching for a common entity in a large corpus.
Although this challenge could be solved by using a modification of Katta’s backend code,

53While one could design an algorithm that only searches the entities in the newly added document,
this approach has not been implemented in Excerbt.

38 CHAPTER 2. RESULTS

memory consumption by STI NER still presents an issue when being used with large
corpora and ontologies.

The percolating NER approach works around this concept entirely by indexing entities
instead of documents. Especially for large text corpora, the entity index is significantly
smaller than the document index, even if large ontologies are being used. Therefore, in
comparison with the STI NER, the percolating approach can also be used on resource-
constrained devices.

Translatron’s NER In Translatron, a variation of the percolating NER is implemented.
Using the FiT-NESS algorithm as discussed in section 2.4.6, further optimization is
achieved using an approach allowing entities consisting of multiple tokens to be indexed
by only their first token.

This approach facilitates a real-time NER that can be applied to arbitrary texts – i. e.
not only those that are imported into Translatron as documents. In conjunction with the
real-time search engine, NER is implemented using an on-demand approach, where the
user has to actively request NER for a document shown as search result. While this might
sound unintuitive at first, this means that the system does not have to perform NER for
all displayed search results. This is especially important as the NER implementation
in Translatron has been optimized for resource-constrained devices rather than for pure
execution speed.

Moreover, it is possible to apply the NER algorithm to arbitrary texts. Although not
implemented in the user interface, it is possible to use programmatic WebSocket access
to send arbitrary text fragments to the server’s NER implementation. In fact, the web
interface simply takes the currently displayed portion of the search result and sends it to
the server using the exact same mechanism.

Figure 2.8: Translatron NER example using UniProt and MeSH as ontology

CHAPTER 2. RESULTS 39

NER coloring In the user interface, NER hits in Translatron are marked as colored
boxes, with the boxes being colored depending on the source database. In figure 2.8, gray
hits represent UniProt hits (from other database IDs being cross-referenced in UniProt)
while blue hits represent MeSH terms. Green terms would indicate UniProt IDs, i. e. hits
where the UniProt ID or name itself matches the text. In this example, however, no such
hits have been found.

This approach allows the user to easily distinguish between different aspects of entities,
as for a specific use case the coloring scheme can be fully customized: Not only can it be
applied to NER hit sources but also to properties like the source taxonomy of a specific
hit.

By clicking on the hits, the user is automatically redirected to a page where details
about the found entity are shown. Figure 2.9 on the next page shows the entity information
that is shown when clicking on “DISC1” in figure 2.8. Although currently only a limited
amount of information is imported and displayed for both entities and documents, it is
clearly visible from figure 2.9 on the following page that the interface concept can display
a multitude of useful information to the user. Most importantly, arbitrary cross-database
links such as GO terms (Gene ontology, see [26]) are supported (also see section 3.1.5).

Additionally, Translatron’s ontology backend automatically imports the UniProt meta-
database (see [10]) – thus, hovering the mouse pointer over the name of a database display
a description of said database. Additionally, for any UniProt cross-referenced database,
links to the database itself and to all entries are automatically created, facilitating fully
automatic cross-linking. The data imported from the meta-database can be overridden or
extended by modifying a simple JSON file – therefore providing not only the possibility
to correct for errors in the UniProt meta-DB but also allowing custom databases to be
added without restrictions.

While search modes such as lemmatization (see section 2.3.8) could be implemented
in Translatron, the current implementation uses case-insensitive search for the document
full-text search while the NER and the entity viewer use a case-sensitive search mode.
Although there are various applications where selectable and more complex search modes
would be useful, this decision was made in order to provide the most simple implementa-
tion possible – in effect facilitating easier extensibility (also see section 2.3.7).

Domain-specific ontologies

The concept of domain-specific text corpora, as discussed in section 2.3.1, can also be ap-
plied to ontologies: When using an oversized ontology that covers more than the required
domain of information, it is likely that NER hits that are considered interesting for the
specific use case will be hidden by the multitude of irrelevant hits.

For example, a chemist only interested in finding chemical identifiers from inorganic
chemistry would commonly not want to see protein identifiers that are present in the text.
By using Translatron, it is easily possible to build a fully domain- and application-specific

40 CHAPTER 2. RESULTS

Figure 2.9: Translatron entity search example (screenshot)

ontology that can also be updated on-the-fly. Based on the NER architecture and the
backup feature (see section 2.3.5), this ontology can also easily be exchanged without the
requirement of re-indexing any document.

In order to illustrate the argument of unspecific hits hiding relevant ones, an experi-
ment has been performed with Translatron, encompassing not only the UniProt ontology,
but also Wikipedia (see [11]) where every Wikipedia page title is considered an entity:

Figure 2.10: Translatron NER performed with Wikipedia as ontology (screenshot)

As can be observed in figure 2.10, the large amount of entities being present in the
ontology leads to a cluttered result as virtually every word or word pair in the text is found
as a Wikipedia hit. Although Translatron is able to provide some level of differentiation

CHAPTER 2. RESULTS 41

by using separate colors for different entity sources (in this example, Wikipedia is colored
orange), likely the user will miss significant hits.

Using domain-specific ontologies, this behavior can be easily circumvented. Not only
can the user preselect certain classes of entities to find, the operator can also dynami-
cally add or remove entities based on the search results, facilitated by the lightweight
architecture and extensibility of Translatron (also see section 2.3.7). For example, the
aforementioned chemist could easily remove the trivial names of noble gases from the on-
tology the search results are cluttered by too many hits for this class of entity. Although
creating and maintaining a specific ontology requires more effort than simply importing
entire databases in an unfiltered manner, it is likely that for many applications the benefit
will outweigh the costs.

2.4 Algorithms for resource-efficient text mining
Although it is frequently claimed that a single algorithms will solve one problem for any
possible use case, today, many designers consider the “One size fits it all” paradigm out-
dated (see [73]). Due to the inherent focus of Excerbt’s algorithms on raw performance
commonly disk space or main memory utilization is traded for an increased speed. There-
fore it provides significant benefits for large-scale text mining applications – however, a
separate set of algorithms needs to be used to facilitate smaller-scale text mining specially
fitted for resource-constrained devices.

In the following sections I will examine seven new algorithms that are implemented
in Translatron to optimize its three core subsystems NER, search and user interface for
resource-constrained devices.

2.4.1 PRIMORDIAL indexing
When using concepts like inverted indexing to index large corpora of biomedical texts, it
is obvious that only a tiny fraction of the terms that are stored in the index will actually
be searched. Although no authoritative statistics on this aspect seem to be available, for
this thesis we will conservatively assume that 5%54 of the terms are actually searched for
even in a heavily used system.

Assuming any entry in the index consumes the same amount of time during the in-
dexing phase, this means that 95% of the indexing time (irrespective of overhead) is
ultimately wasted.

Unless one can accurately predict all actual search terms in advance, though, it is
clear that this overhead can’t be avoided entirely. Using PRIMORDIAL, however, one
can significantly reduce said overhead by using laziness in order to perform a subset of

54The actual number is presumed to be highly variant, but based on specific tasks performed with
Excerbt this value might be less than 0.01% for non-domain-specific or broad-domain corpora.

42 CHAPTER 2. RESULTS

the indexing operations not in advance for all index entries but only “on-demand”, i. e.
when the term is actually searched.

prion −→ PMC:123 PMC:456

Indexer

emits entries

prion −→ PMC:123 PMC:456 PMC:987

prion −→

PMC:123 PMC:456

PMC:987

New entry Existing entry

Unevaluated write

Legend

Classical indexingPRIMORDIAL

Search for ”prion”

PMC:123 PMC:456 PMC:987

PMC:123 PMC:456 PMC:987

PMC:123 PMC:456 PMC:987

PRIMORDIAL lookup Classical lookup

Evaluation via merge operator

Send result to client

Figure 2.11: PRIMORDIAL simplified data flow

In figure 2.11, PRIMORDIAL’s approach on the left is compared with classical, “ea-
ger” (as opposed to lazy) indexing on the right. The creation of inverted indices can be
simplified to – for each token to be indexed – building a list of documents containing that
token (this mapping is symbolized by −→ in the figure, with the token on the left and
the entries on the right). When searching for that token, one can simply look it up in the

CHAPTER 2. RESULTS 43

Write request
value 1

Write request
value 2

Merge operator
Append

Result
value1value2

Figure 2.12: A high-level overview on merge operators

database and thereby retrieve a list of documents containing that term.
For this example, we assume that for the token “prion”, the document “PMC:987” is

already present in said list and “PMC:123” and “PMC:456” shall be appended to that
list in the ongoing indexing operation.

In the classical approach, the old value will be read from the database, the new values
will be appended to the list and finally the enlarged list is written back into the database.
Although highly variant with the implementation, creating and writing this list for the
current token many times (up to once for every single index entry) can be presumed to
consume a significant amount of resources over the whole indexing run.

In PRIMORDIAL, this step works differently: Instead of performing this evaluation
immediately – we recall, in 95% of the cases this time is wasted as the value will never
be used – PRIMORDIAL only evaluates it if and when this specific row in the database
is queried, thereby saving a significant amount of indexing time (see the lower part of
figure 2.11). When the value is queried for the first time, the evaluated list is immediately
written back into the database, yielding a virtually zero overhead solution for subsequent
queries. In figure 2.11 unevaluated writes are symbolized by dashed boxes containing one
or more entries.

One core question remains: How can this concept be implemented without requiring
manual interaction from any developer extending or modifying the system?

Fortunately, YakDB provides a built-in solution: By using the mechanic of merge
operators, one can define an arbitrary function to merge two or more distinct writes into a
single binary value. In figure 2.12 an example of the execution of a simple merge operator
is shown: It operates on two values “value1” and “value2”, producing “value1value2” by
simple appending the last input to the first.

The merge operators in YakDB are evaluated only (in the scope of a single key) if at
least one of the following criteria is met:

• The key is queried or a sequential scan is performed that includes the key

44 CHAPTER 2. RESULTS

• Certain database-level automatic partial compactions occur whose discussion would
exceed the scope of this thesis

• A full or partial compaction is manually requested

Particularly interesting for some use cases is the last option: If an application requires
maximum search speed even for the first time when a key is read or if the space overhead
of PRIMORDIAL is not considered acceptable, it is possible to perform a database-level
compaction. This operation can either be performed on a specific key range or on the
whole database, in effect evaluating all keys and storing them as space-efficient as possible
without sacrificing performance. Although heavily variant and therefore hard to bench-
mark, compaction takes about five minutes per gigabyte database size (measured before
compaction) on modern computers.

Note that PRIMORDIAL by itself does not specify a particular merge operator, mak-
ing its core approach also applicable to other applications. Furthermore, the index struc-
ture itself is only handled in an abstract manner by PRIMORDIAL: Beyond simple lists
of occurrences, the core algorithm also supports more complex structures like hierarchies,
graphs or spatial trees – the semantic that is supported only depends on the merge oper-
ator implementation in use. This also means that PRIMORDIAL itself does not handle
concepts like incremental indexing but leaves it to the merge operator implementation to
provide guarantees about its behavior.

CHAPTER 2. RESULTS 45

2.4.2 PRAISER merge operator
In contrast to Excerbt, Translatron can be used as a highly dynamic system: Not only
can a domain-specific corpus and ontology be used, but those can also be modified on
demand. While removing and modifying individual documents is also supported yet
not implemented, it inherently requires a full reindexing run with an anteceding index
truncation55, therefore not exhibiting any specific issues.

Referring to the basic workflow depicted in figure 2.1 on page 6, incrementally adding
documents poses a potential problem because the re-indexing that needs to be performed
does not provide intrinsic guarantees about adding duplicate results to the inverted index.

It is obvious that users don’t want to see those identical duplicates in a list of search
results – they only provide redundancy without any added information. However, algo-
rithms simply removing duplicates might introduce instability, meaning that the order of
the search results will be changed completely even if only a single new search result has
been added. Although it is arguable if stability is required for practical use cases, very
large lists of search results are not expected to look totally different when adding only a
single document.

This is where PRAISER comes in: It provides a simple PRIMORDIAL-compatible
merge operator that not only provides guaranteed removal of redundant elements but an
inherently stable, lexicographical sort order.

Val1 Val2 Val2 Val1

Val2 Val1

Val1 Val2

Create set

Sort elements

Figure 2.13: PRAISER schematic

As shown in figure 2.13 PRAISER consists of two simple steps that are performed on
the result list when the merge operator result is evaluated (see 2.4.1 on lazy evaluation):

55In this context, truncating means emptying the respective table.

46 CHAPTER 2. RESULTS

(1) Place all elements into a set: This removes redundancy but might scramble the
ordering

(2) Sort by binary lexicographic ordering, restoring a guaranteed sorted order
without any assumption about the elements themselves

By using special ordered sets like binary tree sets, the set itself will perform step (2),
eliminating intermediary results and overhead.

As YakDB currently only provides a predefined set of merge operators that, besides
merging, also need to handle binary (de)serialization, the so-called “NUL-separated set
append” operator has been implemented in YakDB, using aforementioned ordered set
implementation with list elements separated by NUL characters.

2.4.3 PERSIST single token indices
One of the main reasons why inverted indices consume large amounts of disk space is the
support for multi-token searches. Intuitively, users expect from a full-text search engine
not only proper results when searching for “prion” but also when querying for “prion
disease”.

Assuming that the expected search result are documents where in some context56 the
terms “prion” and “disease” appear together, the algorithm performing the search must
implement a way to filter out all hits where this condition is not fulfilled.

One classical solution for this issue is to not only index single terms, but also any
k-permutations of tokens that occur in the text. What value of k, i. e. the maximum
number of tokens that are indexed together, is chosen, depends on the usage scenario.
This approach has the core advantage that for most use cases one query only requires a
single database lookup.

The formula for the number of k-permutations, assuming n tokens with k ≤ n in the
context and is well-known:

Pk(n) =
n!

(n − k)!
(2.3)

From equation (2.3) it trivially follows that when indexing all 2. . .k tokens the number
of index entries57 is defined as:

P2...k(n) =
k∑

h=2

n!

(n − h)!
(2.4)

56Examples for this context would be the paragraph, the sentence, within two words of each other or
even the entire document.

57Note that an entry in this context is not necessarily a distinct key in the index database but rather
one element in the list of references for a potentially pre-existing key in the index.

CHAPTER 2. RESULTS 47

Assuming n = 20 and k = 5, a single sentence will generate 1 983 980 entries according
to equation (2.4) – an almost 100 000-fold overhead when compared to the n = 20 single
tokens that need to be indexed for single-token-only search. While in practice this number
can be reduced by marking a significant fraction of those permutations as redundant or
irrelevant (e. g. stopwords which are generally not indexed), the amount of overhead that
remains makes this algorithm unusable for space-constrained devices.

PERSIST provides a space-overhead-free alternative to the aforementioned approach.
It indexes only single tokens and computes multi-token queries by using set intersections
of single token results, using the following procedure:

(1) Split the search query into a set of tokens (“query tokens”) using the preconfigured
tokenization function

(2) Remove stopwords from the query tokens. Stopwords are guaranteed not to generate
any result if the index has been built properly.

(3) Fetch single-token search results for all query tokens

(4) Compute the set intersection of all fetched search results. Optionally, skip search
result sets that would result in an empty result. This is a simple case of automatically
correcting the query as it is likely that the user does not intend seeing an empty
result. The YakDB / Translatron stack implements this option – however, the user
is currently not notified if a query token is ignored due to this feature.

(5) (Optional) Filter out search results where the search terms are present in the wrong
order by checking the original context. This step is not currently implemented by
Translatron which thereby increases the rate of false positives, but also exhibits a
lower false negative rate. As a default configuration, this is considered advisable as
the user will likely tolerate irrelevant search results if potential true-positive results
the operator is looking for are shown in the result list.

Obviously, this step yields the correct result set because a result appears in the final
result set exactly if it appears in all of the single-token search results. For example, in
the sentence

“PrP Sc causes ovine prion diseases”

when searching for “prion diseases” in the sentence context, the sentence will appear on
the result list because it appears on both the single-token search result for “prion” and
the one for “diseases”.

During this step, however, the function used to determine equality of two results
is critical as it determines the search context. For example, in Translatron, a paragraph
context is assumed by default (i. e. a search result is considered a hit if all tokens are found

48 CHAPTER 2. RESULTS

in the same paragraph). Therefore, Translatron uses a binary format for elements of the
inverted index that contains both the document identifier and the paragraph number.
Therefore, a simple binary equivalence function can be used during the set intersection as
this configuration intrinsically checks for equivalence of both the document identifier and
the paragraph number.

This issue gets more complex if the context is, for example, defined as “all tokens
occur within 5 words of each other”. Depending on details regarding the definition of
within 5 words of each other, PERSIST might need to be extended so it can understand
the context beyond a simple stateless set intersection. A detailed discussion, however, is
considered to be highly dependent on the use case and therefore does not fit within the
scope of this thesis.

Although PERSIST trades speed for space and it therefore is perfectly suited for space-
constrained devices, it is doubtable whether the classical algorithm directly indexing multi-
token permutations actually exhibits better performance for a practical average query:
While the number of database fetches is clearly reduced, the database grows so large that
the likelihood of cache hits (i. e. the probability that a requested data block can be served
from main memory instead of the slow disks) reduces to practically zero when assuming
random lookup key. There are also multiple other reasons why most databases exhibit
performance losses when the database itself grows larger that go beyond the scope of this
thesis.

One possible performance issue of the PERSIST algorithm is that large text corpora
may lead to the computation of multi-billion-element set intersections if the first query
token is very common and not a stopword. This would significantly reduce the speed of
the algorithm. The likelihood for this scenario is reduced by both the focus on smaller
domain-specific corpora and the careful crafting of stopword lists.

Should this behavior be an issue in any practical use case, there is a simple solution:
PERSIST can be extended to search pairs or triples of tokens if one of the tokens is very
common in the corpus being used, in effect creating a combination of PERSIST and the
classical solution. This significantly reduces the set size – however, an implementation
is likely to be more complex and trades space consumption for speed, with a speedup
possibly being only observed for a small subset of the queries.

2.4.4 PRESIDE prefix search

When using a search engine that supports real-time queries (i. e. the search is performed
while the user is typing) it can easily be shown that simple exact searches in an inverted
index are likely to generate unintuitive search results:

Consider, for example, the query “prion”. In a real-time-capable full-text search en-
gine58 using simple case-insensitive search and with a corpus containing only the sentence

58i. e. a search engine that generates a query for every typed character.

CHAPTER 2. RESULTS 49

“PrP Sc causes ovine prion diseases”

the following query-result pairs are generated:

• p - No results

• pr - No results

• pri - No results

• prio - No results

• prion - Aforementioned sentence is shown as result

However, clearly the expected behavior is to see the aforementioned sentence as a
search result (which can be considered a best-match) for any of those queries.

The simplest yet obvious solution is to use prefix search: All of the queries without
any result are intrinsically prefixes of the full query prion.

However, prefix search is hard to implement in a performance and space-efficient way
using conventional databases. YakDB, though, provides the built-in scan mechanism that
allows efficient iteration over database entries in lexicographical order – PRESIDE is the
application of this method for prefix full-text search.

For the query (and therefore prefix) “pri”, database entries like print, primal and
primary can be found. As a stop key59 for the scan operation, prj can be used: Any
entry which is prefixed by pri is guaranteed to be less than prj in lexicographical order.
Furthermore, any arbitrary entry that is not prefixed by pri is either less than pri or
greater than or equal to prj, yielding intrinsically correct results.

However, the user must take special care that not too many results are selected by
the scan operation. For instance, the query p would select all entries starting with p – for
a large corpus, this might yield many millions of result entries. Therefore, PRESIDE is
parameterized with a maximum number of database entries it will iterate over (whichever
event happens first, the scan limit or the stop key being reached, will stop the iteration).
This approach in effect allows limiting the resources consumed by a single scan request.

When being used in conjunction with PERSIST (see section 2.4.3), PRESIDE requires
a scan for every single query token of a multi-token query. Although this intrinsically
reduces the performance60, scans are generally considered a fast operation in YakDB and
the improved query flexibility seems to be worth the extra CPU time spent even for slower
setups.

In its default configuration, Translatron generally searches for prefixes when querying
the document database, while entities are searching by exact match – this behavior is

59i. e. the first key that will not be iterated over.
60Not only because scans are intrinsically slower than single reads but also because multiple reads can

be joint into a single YakDB request while multiple scans can not.

50 CHAPTER 2. RESULTS

easily adjustable, though. Because of the intrinsic properties of PRESIDE, both types
are supported with the same index and do not require any database modification.

2.4.5 PRO-PANE result ordering

ID : PMC:12345

Authors : Yang et al.

Title: Analysis of ovine prion diseases

Text : The P rPSc prion continues to pose a health threat for sheep. [...]

Document

text:prion −→ PMC:12345

text:sheep −→ PMC:12345

title:prion −→ PMC:12345

meta:yang −→ PMC:12345

Index

text:prion −→ PMC:12345

title:prion −→ PMC:12345

Lookup result

Indexing (excerpt)

Search for ”prion”

Result: PMC:12345 (hit location: title), PMC:12345 (hit location: text)

Search for ”prion”

Sort: Priority(title) > Priority(text)

Figure 2.14: PRO-PANE example schematic

CHAPTER 2. RESULTS 51

For Google – one of the most-used generic search engines available today – one of the
biggest factors for success is to increase the relevance and thereby the perceived quality
of the search results (see e. g. [64]). As already discussed in section 2.4.4 and section 2.4.3,
for Translatron it is therefore relevant to generate search results that match the user’s
expectation. Although it is likely that with a simple system one can’t achieve the level of
search customization and adaptivity that Google provides for the generic use case, very
simple optimizations can lead to a significant improve in search result quality.

One of the most important aspects of relevance is the order of search results – in
other words, the displaying of more relevant result before less important ones. However,
without focusing on a very specific use case, it is hard to define relevance in this context.
PRO-PANE is a generic search result reordering algorithm that circumvents this intrinsic
problem by allowing an arbitrary number of relevance classes with an programmable
order relation on said classes that can be changed for each individual query. By using
PRO-PANE, this simple concept can be stored efficiently in key-value databases.

As depicted in figure 2.14, PRO-PANE hooks into the indexing phase by prepending
the relevance class to the key. In most use cases (including the default configuration of
Translatron), these relevance classes are equivalent to the coarse location of the hit. For
instance, Translatron defines the three relevance classes title, text and meta – this is
based on the assumption that when a user searches for an arbitrary term, the expected
result is to see hits from a document’s title before hits from the full text or even hits from
the metadata.

PRO-PANE consists of three core hooks61:

• An indexing hook that extracts the relevance class from the hit and prepends said
relevance class.

• A lookup hook that modifies the query database lookup (see section 2.4.3 for details):
The database read requests are modified so that for each query token all relevance
classes are queried. For performance-critical applications, it is possible to query
only a subset of the relevance classes for specific queries.

• A sort hook that sorts the result after lookup and filtering. This uses the order
relation defined on the relevance classes to, for example, select title-class hits
before text-class hits.

When the overall number of hits should be limited, PRO-PANE uses a parameterized
selection scheme that iterates over the relevance class hit lists and builds a result list:

• Initialize the result list r to be empty

• Loop over the relevance classes, highest relevance first:

61A hook is a part of a program that is injected into an existing process and modifies its behavior.

52 CHAPTER 2. RESULTS

– Append all hits from the current relevance class to r

– If the length of r is less than the minimum hits parameter, continue with the
next relevance class (if any)

• If the length of r is greater than the maximum hits parameter, remove everything
except the first maximum hits entries from r

Assuming maximum hits ≥ minimum hits, this algorithm ensures that a) no more than
maximum hits are present in any case and b) if a certain number of hits (minimum hits) is
reached by using only results from high-relevance classes, no results from lower-relevance.
A common configuration is to set minimum hits = maximum hits, which is equivalent to
taking the first maximum hits elements from a concatenated list of all relevance classes.

By default, Translatron uses minimum hits = 50 and maximum hits = 250. However,
these parameters are generally expected to be variable with the specific use case.

2.4.6 FiT-NESS multi-token NER
Definition 2 (Single-/multi-token entity identifier)

A single-token entity identifier is defined as a nonempty entity name which, when
processed with a given tokenization function, yields a token list having a length of
one.

A multi-token entity identifier is defined as any identifier for which the criteria for
a single-token identifier do not apply.

In practical NER implementations, there are significant differences between indexing
and search for single-token entity identifiers (see definition 2) as compared to NER algo-
rithms that also support multi-token entities62.

For example, similar to single- and multi-token queries (see section 2.4.3), a multi-
token capable NER not only has to be able to find an occurrence of “prion” but also an
occurrence of “prion diseases”.

When using a percolator-type NER like Excerbt or Translatron (see [78, section 4.3.1]
and the discussion in section 2.3.8), though, one has to deal with a major issue which is
most relevant for space-constrained devices:

When indexing the entity “prion diseases”, the entity yields two index entries, one for
prion and one for diseases. The number of entries can also be defined as:

E(n) ∈ O(n)

where E(n) = Number of index entries for an entity containing n tokens
(2.5)

62Although single-token identifiers can be seen as special cases of multi-token identifiers, it is often
advisable to handle them differently due to the increased overhead of multi-token identifier processing.

CHAPTER 2. RESULTS 53

prion diseases | MeSH:D017096

prion −→ prion diseases | MeSH:D017096

Index only first token

Indexing

”The PrP
Sc prion causes ovine prion diseases”

prion diseases | MeSH:D017096

Index lookup

Index: prion diseases

Text: prion causes

Match: X ✗

Index: prion diseases

Text: prion diseases

Match: X X

Postprocessing

Found ”prion diseases” starting at token 6

NER

Figure 2.15: FiT-NESS named entity recognition example

This property is most relevant for entities containing many tokens like IUPAC identifiers
(if splitted by dashes), as these will fill up the index with a significant number of entries.

FiT-NESS, however, approaches the NER problem differently: Instead of indexing
every single token of a multi-token entity, it only indexes the first token, thereby achieving
E(n) ∈ O(1) space complexity and finds multi-token hits via postprocessing. As a side
effect, the internals of this algorithm are also regarded to be significantly more simple
than a full implementation of a classical multi-token NER.

As shown in figure 2.15 the core algorithm consists of three core phases:

• Indexing, where only the first token of an entity (e. g. prion) is stored in the inverted
index with a reference containing the full identifier of the entity (e. g. prion diseases)

• Search, where every token contained in the text is looked up in the database. Dupli-
cate tokens in the document can be skipped during the lookup. Using the YakDB
feature of multi-key read requests, an entire document generates only a single request

54 CHAPTER 2. RESULTS

to the database using this approach.

• Postprocessing, where for any hit of a first token the implementation checks if the
subsequent tokens in the document match the subsequent tokens in the original en-
tity identifier. This step needs to be performed for every occurrence of the first token
in the document. If all tokens match, the location in the document is considered a
NER hit.

Obviously, FiT-NESS does not require a separate implementation for single tokens as
the postprocessing phase will always yield a hit if no subsequent tokens are present in the
entity. This reduces the overall complexity of the code.

In its current form, FiT-NESS does not implement fuzzy search. For instance, it
would not find an instance of the entity prion diseases in the text “prion-transmitted
diseases”. However, the algorithm is easy to modify, for example by searching for the next
token in the same sentence instead of expecting a match in the next token – this can be
done performantly by, for example, using a modified version of the Boyer-Moore algorithm
operating on words instead of characters (see [31]). Even a definition of fuzziness where no
exact match for the first token is required can be implemented, albeit this is significantly
more difficult: One can also index one or more tokens besides the first one, creating a
combination of FiT-NESS with the classical algorithm.

FiT-NESS – as implemented in Translatron – might exhibit slight performance issues if
the first token of an entity is very common and thus, the inverted index entry for said first
token grows very large. However, this case is presumed to be unlikely for Translatron’s
use case, especially if domain-specific ontologies as discussed in section 2.3.8 are used.

2.4.7 WESTSIDE client interface
In contrast to the other six algorithms that have been discussed in this chapter, WEST-
SIDE does not improve processes that are internal to the server but the client-server
communication strategy.

Most web-based systems use the HTTP protocol in order to communicate with the
server. However, in the context of text mining systems this leads to five major issues:

• Connection overhead: With HTTP, every client-server communication has not
only overhead generated by parsing comparatively large HTTP headers but also
overhead due to the setup of a new TCP connection. Although mechanisms like
the HTTP Keep-Alive header (see [61]) are widely deployed to alleviate the impact
of those issues, it is difficult to avoid this overhead altogether, in effect leading to
increased latency and lower throughput, both of which are relevant for real-time
search under certain circumstances.

• Stateful client connections require additional layers: HTTP by itself does
not group requests by client. Although this feature can be implemented with cookies

CHAPTER 2. RESULTS 55

and similar pseudo-stateful methods, it is hardly possible to associate information
to a client without adding a significant amount of complexity to the server software –
therefore, if no complex session layer must be used, the server can only use stateless
client connectivity.

• Asynchronous database connections: If it is not possible to associate a ded-
icated database connection to a client due to statelessness, one global connection
(or a pool of connections) has to be used. Although the semantics of those connec-
tions vary significantly from database to database, most connections either perform
locking and therefore degrade the system performance or require the developer to
manually re-associate responses to their original requests like YakDB: Those asyn-
chronous database connections add a significant amount of complexity to the system,
thereby limiting its extensibility.

• Unordered client requests: Even if mechanisms like keepalive are used, there is
no guarantee that client requests arrive in the same order they were sent in. State-
ful algorithms extending Translatron’s client/server communication might, however,
might depend on a specific order of messages.

• Communication can only be initiated by the client: The server is not able to
send a message to the client without the client first sending a request to the server.
Commonly, this issue is circumvented by using mechanisms like long polling (see
[57]) – however, this introduces extra overhead and does not allow true bidirectional
communication.

In order to resolve these issues, a protocol called WebSocket was standardized (see
[40], [44] and [6]) that uses HTTP only for protocol negotiation and then falls back to a
message-based communication scheme featuring true bidirectional communication.

By using a single WebSocket connection per client, WESTSIDE is able to resolve all
the aforementioned issues. Not only can a single database connection be associated to
a single client in a stateful manner, WebSockets also provides guaranteed ordering of
messages, decreasing the likelihood of complex failure modes for both the client and the
server.

For example, in earlier versions of Translatron there was an issue with real-time search
(also see 2.4.4): When the user typed the first characters, the queries were very short and
therefore produced a large number of results, significantly increasing the time required to
process the query. When refining the query, however, the query processing intrinsically
got faster as the number of results decreased. However, the user interface was configured
to replace the displayed search results with the new ones whenever a response arrived at
the client. When typing sufficiently fast, though, processing the shortest query took longer
than processing the longest, most specific one – leading to one of the shortest queries to
arrive last at the client. Therefore, after the user finished typing the last character of the

56 CHAPTER 2. RESULTS

search term, frequently an earlier, less specific request arrived as the last response. This
caused the user interface to render, for example, the result for the pr query when the user
actually typed prion.

This is a prime example of a complex failure mode that only occurs under very special
circumstances like a certain database size, a certain CPU speed, certain dynamic cache
characteristic etc. and is therefore hard to anticipate if the system is not intrinsically safe
against a particular class of issues.

WebSockets, on the other hand, allow implicit sequentialization of requests – in other
words, the server will strictly process one request after the other and therefore will also re-
spond in the correct order. Additionally, WebSockets are virtually overhead-free63 without
sacrificing the simplicity of Translatron’s design.

In the current version of Translatron, the WebSocket communication is handled on
port 9000, in separate to the HTTP server that serves the static user interface. This
behavior might cause issues with firewalls that don’t allow port 9000 to pass through. As
Translatron is built primarily to run on the local computer or in the local network, this
is not generally considered an issue.

63Although WebSocket messages require a header and in the client-to-server direction also requires
a special encoding (see [6]), these factors have little contribution to the actual amount of CPU time
consumed on modern computers.

Chapter 3

Summary & Outlook

In this thesis, concepts and algorithms facilitating domain-specific text mining on resource-
constrained devices have been discussed. The proof-of-concept tool Translatron provides
an implementation of many novel algorithms and concepts that have been analyzed – in
conjunction with the bioinformatics-focused YakDB database, this approach provides a
high-performance scaffold on which customized text mining applications can be imple-
mented.

Due to the focus on resource-constrained devices and a domain-specific approach,
Translatron can be used to facilitate text mining where before this was impossible: Exist-
ing tools generally require powerful servers or clusters that are hard to maintain and fail
more frequently than a local mining tool like Translatron.

3.1 Limitations of Translatron
Although it has been shown that Translatron has inherent advantages when compared to
systems like Excerbt, it does not represent a finished, ready-to-use system: Its proof-of-
concept nature also connotes that it is not expected to be bug-free – without modification
is likely unsuited for most use cases.

It is therefore important to discuss not only limitations and potential shortcomings of
the current Translatron version, but also possible solutions for these issues.

Due to the complex nature of the text mining topic, this list can’t be exhaustive –
instead, the most important points that have not been discussed yet in chapter 2 are
outlined so future users of Translatron can easily find their way around its drawbacks.

3.1.1 Missing semantic features

In contrast to Excerbt, Translatron is not a full-featured relation extraction engine but
a full-text search engine with an integrated ontology. Although this means Translatron’s

57

58 CHAPTER 3. SUMMARY & OUTLOOK

architecture is more simple and lightweight, applications like Negatome 2.0 (see [29]) that
depend on the relation feature of Excerbt are not possible without adding a complete SRL
stack to Translatron.

Representing Excerbt’s relation graph in YakDB is easy due to the built-in graph
library. However, as discussed by Wachinger in [78] SRL-based systems still have signif-
icant issues understanding natural language. For example, they have issues determining
the meaning of cross-sentence relations and natural ambiguities in the language in use
that can only be resolved by a person having a deep understanding of the context. This
area is actively researched, however, and might profit from the easy extensibility of Trans-
latron. Without writing an entirely new text mining system for every new NLP algorithm,
a researcher could use Translatron as a basis for the evaluation of new algorithms.

3.1.2 Cluster use of Translatron

As discussed in section 2.3.4, the Translatron/YakDB stack by itself do not support clus-
tering – though, with YakDB’s distributed data processing as examined in section 2.3.6
it would be possible to distribute, for example, semantic role labelling among multiple
nodes.

Besides simple distributed computation, a distributed and therefore scalable storage
can be realized by simply placing the YakDB storage directory on a clustered file system
like Ceph (see [80]) – even using the HDFS virtual file system driver on top of a Hadoop
cluster is possible using this strategy.

One exotic and therefore rarely mentioned use of clusters that fits well into the domain-
specific model is the parallel deployment of multiple instances: A single central deployment
is likely not adapted to the differing requirements of different work groups and therefore
inflexible at best and dysfunctional at worst. By instead deploying a high number of
very lightweight, parallel instances of a software, not only is there redundancy in terms of
backup instances in case one should fail, but any workgroup has the flexibility of trying out
different configurations or datasets and comparing them directly. When using a cluster
sized similarly to the one used by Excerbt, it is presumed that more than 1000 instances
of Translatron could be ran in parallel, even though no authoritative tests have been
performed. A single YakDB instance can easily handle multiple Translatron instances in
parallel – it is actually possible to run several Translatron instances accessing the same
set of database tables and perform load-balancing using this configuration.

3.1.3 Lower memory thresholds

Even if Translatron is generally optimized to consume minimal amounts of both main
memory and disk space, there are several reasons why Translatron can’t consume an
arbitrarily low amount of memory, even if using very small corpora and ontologies:

CHAPTER 3. SUMMARY & OUTLOOK 59

• Python interpreter: The interpreter itself plus the Translatron Python scripts
consume at most a few tens of megabytes, depending on the configuration in use.
Additionally, both Translatron’s source code including libraries and the Python
interpreter itself require disk space in the magnitude of multiple tens of megabytes.
However, a specific application requiring ultra-low disk-space utilization can replace
many of the libraries by more compact, application-specific versions only supporting
a minimum feature set.

• YakDB: Although written in C++, the different parts of YakDB still consume be-
tween about five and multiple hundreds of megabytes of main memory, depending
on the configuration being optimized for speed or for low space consumption.

• ØMQ queueing: The queueing as discussed in section 2.3.3 consumes more mem-
ory if the queue size is set to a large number of messages and the queue is filled
up. Additionally, it depends on the size of a request, as a ØMQ queue always stores
up to a constant number of messages and not up to a constant number of bytes.
This aspect is likely to only cause transient peaks of memory consumption during
high-load phases – one example for such a scenario would be programmatic usage
of the NER API that generates large read requests as discussed in section 2.4.6.

• Browser: If the client also runs on a resource-constrained device, it is likely that
the browser consumes a majority of the memory: Even though mobile browsers are
optimized for low memory consumption, complex real-time user interfaces like the
one used by Translatron will lead to an increased memory consumption, especially if
multiple hundreds of results are displayed. The actual memory consumption varies
heavily with the device and browser characteristics and can thus not be estimated
accurately.

In general, those inherent limitations – proper configuration presumed – are very low
and therefore should only rarely have an impact even for devices with as low as 256
MiB of main memory, provided that the browser is sufficiently efficient in terms of main
memory utilization. However, it is clear that using the current architecture, Translatron
can’t be easily implemented on fully embedded platforms like microcontrollers (e. g. for
implementing the “Internet of Things” paradigm) that contain main memory in the order
of hundreds of kilobytes (see e. g. [9]). This is, however, not only considered a niche
application but also a class of platforms that requires yet another set of highly specialized
algorithms – therefore, analyzing this problem in detail would by far exceed the scope of
this thesis.

3.1.4 Lack of configurability
In its current form, as shown in figure 2.3 on page 8 Translatron is a simple full-text
search engine without the possibility of adding additional filters to the search result. This

60 CHAPTER 3. SUMMARY & OUTLOOK

shortcoming is not inherent to Translatron’s design but based on the assumption that
software without a large amount of features is easier to understand and therefore easier
to extend – still, it is likely that many practical applications will require a certain set of
filters to improve the perceived quality of the search results.

One major limitation is the user interface: While the simple search interface is sufficient
to show that Translatron’s concepts work, developing an user interface optimized for user-
friendliness is beyond the scope of this thesis. Although Translatron’s interface is built
on a responsive basis so handheld devices are supported, rendering the search results is
slow on mobile devices. Furthermore, the display of search results (both documents and
entities) has not been optimized for mobile use especially on smartphones.

However, Translatron’s interface is much easier to modify than, for example, Excerbt’s
web-based UI. For Excerbt, parts of the interface are dynamically generated by the server
(therefore modifying the complex server code is required for many modifications) whereas
Translatron uses a purely static webinterface consisting only of a number of files that are
sent to the client without modification (also see section 2.1).

In order to support features like faceted search (see [51]), both Translatron’s server
and the user interface will need to be extended. For example, the user should be able to
select the search mode (e. g. case-sensitive or case-insensitive) and a range of years to filter
the search results. Additionally, it might be advisable for some applications to manually
select exact search over prefix search (also see section 2.4.4).

3.1.5 Limited import capability
As depicted in figure 2.1 on page 6, Translatron currently only supports importing PMC
documents and entities from UniProt, MeSH and Wikipedia. For most practical applica-
tions, this list will need to be extended significantly: For example, a microbiological appli-
cation might require importing MEDLINE abstracts (a dataset which was not available
during Translatron’s development), PDF reports and HTML-based views of closed-access
subscription papers, supplemented by metadata fetched via the OAI-PMH method (see
[72]). On the ontology side, this application might, for instance, require indexing the
NCBI taxonomy, KEGG pathways and PubChem compounds.

Not only is Translatron currently limited in the number of importers it supports, but
also the importers do not import and index all relevant parts of the documents. While it
can be argued that not importing the amino acid sequence of UniProt entities is irrelevant,
the PMC importer does not handle abstracts separately from the main text. Furthermore,
PMC metadata is currently imported but not indexed, emphasizing its proof-of-concept
nature.

Furthermore, not the entire set of PMC XML document can be parsed correctly by
the importer: For single documents that are slightly different in format than others (for
example, they might be missing an optional tag), the parser might print an error message
and ignore this document. During the development of Excerbt, a similar problem was

CHAPTER 3. SUMMARY & OUTLOOK 61

encountered: Many import formats slightly changed over time, therefore the importer
required constant maintenance and testing with updated datasets. As Translatron’s im-
porters are written in Python and not optimized for speed but for simplicity, they can be
modified more easily – therefore reducing the effort required for updates and maintenance.

While those shortcomings are typical for a proof-of-concept tool and require further
tests, it is clear that any productive use of Translatron will require further development
and, most importantly, testing.

3.1.6 Limited reindexing support
As already discussed briefly in section 2.4.2, the PRAISER merge operator is only designed
for incrementally adding documents. Updating documents or removing them will result in
false hits being present in the index as removing individual hits is currently unsupported.

Moreover, when incrementally adding documents, reindexing is not performed auto-
matically. This means that after inserting a new set of documents, the user manually
has to start the indexer. Without doing this, the new documents will not be found via
the document search. This behavior is, however, not caused by conceptual shortcomings
of Translatron but by implementation details. In a productive environment it might be
reasonable to automatically start indexing when any new document is added. While this
approach slows down the import considerably due to the comparatively slow indexing
operation being performed. Additionally, it is currently impossible to perform indexing
only on a subset of documents. This is easy to implement, however, and especially for
small corpora the period of time required for a full indexing run is commonly less than
ten minutes. The same limitations apply to the ontology indexing when incrementally
adding entities.

In general, fully incremental indexing – i. e. not only supporting to add documents
but also modifying or deleting them (as discussed in section 2.3.1) – can be implemented
in Translatron by using a more complex merge operator than PRAISER that can also
delete obsolete index entries. However, for the current implementation of Translatron,
the tradeoff of not supporting modification or deletion was chosen in order to provide a
simple framework that can easily be extended.

3.1.7 Platform support
While Translatron, as discussed in the previous chapters, generally supports virtually
arbitrary platforms including mobile handheld devices, development and testing have
been done exclusively on Linux-based computers due to the proof-of-concept nature of
the software. For an adaptation to a specific platform it is required to port Translatron
and all of its dependencies, most notably YakDB, ØMQ and RocksDB.

RocksDB seems to be the limiting factor in this stack as Facebook apparently uses
it exclusively on Unixoid platforms and therefore does not seem to have any particular

62 CHAPTER 3. SUMMARY & OUTLOOK

interest in porting it to other platforms such as Windows. Although there are contribu-
tions towards supporting a build on Windows, they are most likely incomplete, leading
to the conclusion that porting RocksDB onto other platforms would require a significant
amount of effort (see [7]).

Independent of the platform the server runs on, Translatron supports completely arbi-
trary client platforms: The user interface is purely browser-based and thus only requires
a modern browser with support for WebSocket communication (see section 2.4.7) and
AngularJS.

3.2 Future developments
Due to the open-source nature of Translatron, custom modifications and improvements –
even commercial ones – are allowed and actively encouraged (see appendix B). The goal
of the Translatron project is to provide not only a freely available implementation of a
generic domain-specific text mining system, but a basis for future developments in the
area of natural language processing.

By implementing novel algorithms from different areas of science, it is believed that
Translatron will not only prove advantageous to computational biology, but also to a wide
variety of other scientific subjects, especially for niche applications that are not targeted
by classical text mining systems.

List of Figures

1.1 Cumulative number of MEDLINE citations 2

2.1 Translatron’s data import workflow . 6
2.2 Translatron architectural overview . 7
2.3 Translatron search example . 8
2.4 YakDB table IO routing schematic . 16
2.5 Asynchronous vs. synchronous communication schematic 19
2.6 Excerbt architecture . 22
2.7 MapReduce overview . 30
2.8 Translatron NER example . 38
2.9 Translatron entity search example . 40
2.10 Translatron NER with Wikipedia ontology 40
2.11 PRIMORDIAL data flow . 42
2.12 Merge operator overview . 43
2.13 PRAISER schematic . 45
2.14 PRO-PANE example schematic . 50
2.15 FiT-NESS NER example . 53

63

Bibliography

[1] AngularJS homepage. https://angularjs.org/. – Accessed 2015-05-07

[2] Apache Thrift homepage. https://thrift.apache.org/. – Accessed 2015-05-06

[3] Katta homepage. http://katta.sourceforge.net/. – Accessed 2015-05-07

[4] MessagePack website. http://msgpack.org/. – Access 2015-05-07

[5] PostgreSQL reference: VACUUM. http://www.postgresql.org/docs/9.3/
static/sql-vacuum.html. – Accessed 2015-05-05

[6] RFC 6955, The WebSocket Protocol. https://tools.ietf.org/html/rfc6455. –
Accessed 2015-05-07

[7] RocksDB issue tracker on Windows support. https://github.com/facebook/
rocksdb/issues/169. – Accessed 2015-05-06

[8] Samsung Series 830 datasheet. http://www.dabs.com/content/uni2/
documentation/7s2l/samsung_ssd_830_series_data_sheet_rev_1_0.pdf. –
Accessed 2015-05-07

[9] STM32F407 datasheet. http://www.st.com/web/en/resource/technical/
document/datasheet/DM00037051.pdf. – Accessed 2015-05-06

[10] UniProt meta-database entry example (BioCyc). http://www.uniprot.org/
database/5. – Accessed 2015-05-05

[11] Wikipedia. http://www.wikipedia.org/. – Accessed 2015-05-07

[12] ZeroMQ homepage. http://zeromq.org/. – Accessed 2015-05-06

[13] ZeroMQ language bindings. http://zeromq.org/bindings:_start. – Accessed
2015-05-06

[14] Texas Instruments DP83865 Gigabit Ethernet PHY datasheet. http://www.ti.com/
lit/ds/symlink/dp83865.pdf. Version: 2004. – Accessed 2015-05-05

64

https://angularjs.org/
https://thrift.apache.org/
http://katta.sourceforge.net/
http://msgpack.org/
http://www.postgresql.org/docs/9.3/static/sql-vacuum.html
http://www.postgresql.org/docs/9.3/static/sql-vacuum.html
https://tools.ietf.org/html/rfc6455
https://github.com/facebook/rocksdb/issues/169
https://github.com/facebook/rocksdb/issues/169
http://www.dabs.com/content/uni2/documentation/7s2l/samsung_ssd_830_series_data_sheet_rev_1_0.pdf
http://www.dabs.com/content/uni2/documentation/7s2l/samsung_ssd_830_series_data_sheet_rev_1_0.pdf
http://www.st.com/web/en/resource/technical/document/datasheet/DM00037051.pdf
http://www.st.com/web/en/resource/technical/document/datasheet/DM00037051.pdf
http://www.uniprot.org/database/5
http://www.uniprot.org/database/5
http://www.wikipedia.org/
http://zeromq.org/
http://zeromq.org/bindings:_start
http://www.ti.com/lit/ds/symlink/dp83865.pdf
http://www.ti.com/lit/ds/symlink/dp83865.pdf

BIBLIOGRAPHY 65

[15] IEEE 802.11n-2009. http://standards.ieee.org/getieee802/download/802.
11n-2009.pdfs. Version: 2009. – Accessed 2015-05-06

[16] Solid State Drive vs. Hard Disk Drive Price and Performance Study. http://
www.dell.com/downloads/global/products/pvaul/en/ssd_vs_hdd_price_and_
performance_study.pdf. Version: 05 2011. – Accessed 2015-05-07

[17] ScienceDirect: ScienceDirect Sample Subscription Agreements. http://
info.sciencedirect.com/sciencedirect/buying/primary_license_options/
samplelicenses. Version: 11 2012. – Accessed 2015-05-05

[18] Excerbt website. http://mips.helmholtz-muenchen.de/excerbt/. Version: 2013

[19] Amazon EC2 pricing. https://aws.amazon.com/de/ec2/pricing/. Version: 5 2015.
– Accessed 2015-05-06

[20] ElasticSearch documentation: important configuration chagnes. http://
www.elastic.co/guide/en/elasticsearch/reference/current/
modules-discovery-zen.html. Version: 2015. – Accessed 2015-05-05

[21] LevelDB website. (2015). http://leveldb.org/. – Accessed 2015-05-07

[22] Oracle Forum on Java Unix Domain Sockets. https://community.oracle.com/
message/7081874#7081874. Version: 2015. – Accessed 2015-05-06

[23] RocksDB source code on GitHub. (2015). https://github.com/facebook/rocksdb.
– Accessed 2015-05-07

[24] RocksDB website. (2015). http://rocksdb.org. – Accessed 2015-05-07

[25] Abacha, Asma B. ; Zweigenbaum, Pierre: Medical entity recognition: A compar-
ison of semantic and statistical methods. In: Proceedings of BioNLP 2011 Workshop
Association for Computational Linguistics, 2011, S. 56–64

[26] Ashburner, Michael ; Ball, Catherine A. ; Blake, Judith A. ; Botstein, David
; Butler, Heather ; Cherry, J M. ; Davis, Allan P. ; Dolinski, Kara ; Dwight,
Selina S. ; Eppig, Janan T. u. a.: Gene Ontology: tool for the unification of biology.
In: Nature genetics 25 (2000), Nr. 1, S. 25–29

[27] Barnickel, Thorsten ; Weston, Jason ; Collobert, Ronan ; Mewes, Hans-
Werner ; Stümpflen, Volker: Large scale application of neural network based
semantic role labeling for automated relation extraction from biomedical texts. In:
PLoS One 4 (2009), Nr. 7, e6393. http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC2712690/

http://standards.ieee.org/getieee802/download/802.11n-2009.pdfs
http://standards.ieee.org/getieee802/download/802.11n-2009.pdfs
http://www.dell.com/downloads/global/products/pvaul/en/ssd_vs_hdd_price_and_performance_study.pdf
http://www.dell.com/downloads/global/products/pvaul/en/ssd_vs_hdd_price_and_performance_study.pdf
http://www.dell.com/downloads/global/products/pvaul/en/ssd_vs_hdd_price_and_performance_study.pdf
http://info.sciencedirect.com/sciencedirect/buying/primary_license_options/samplelicenses
http://info.sciencedirect.com/sciencedirect/buying/primary_license_options/samplelicenses
http://info.sciencedirect.com/sciencedirect/buying/primary_license_options/samplelicenses
http://mips.helmholtz-muenchen.de/excerbt/
https://aws.amazon.com/de/ec2/pricing/
http://www.elastic.co/guide/en/elasticsearch/reference/current/modules-discovery-zen.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/modules-discovery-zen.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/modules-discovery-zen.html
http://leveldb.org/
https://community.oracle.com/message/7081874#7081874
https://community.oracle.com/message/7081874#7081874
https://github.com/facebook/rocksdb
http://rocksdb.org
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712690/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712690/

66 BIBLIOGRAPHY

[28] Beck, Jeff: Report from the field: PubMed central, an XML-based archive of life
sciences journal articles. In: International Symposium on XML for the Long Haul:
Issues in the Long-term Preservation of XML, Montréal, Canada, 2010

[29] Blohm, Philipp ; Frishman, Goar ; Smialowski, Pawel ; Goebels, Florian ;
Wachinger, Benedikt ; Ruepp, Andreas ; Frishman, Dmitrij: Negatome 2.0: a
database of non-interacting proteins derived by literature mining, manual annotation
and protein structure analysis. In: Nucleic acids research (2013), gkt1079. http://
www.ncbi.nlm.nih.gov/pmc/articles/PMC3965096/

[30] Bolz, Carl F. ; Cuni, Antonio ; Fijalkowski, Maciej ; Rigo, Armin: Tracing
the meta-level: PyPy’s tracing JIT compiler. In: Proceedings of the 4th workshop on
the Implementation, Compilation, Optimization of Object-Oriented Languages and
Programming Systems ACM, 2009, S. 18–25

[31] Boyer, Robert S. ; Moore, J S.: A fast string searching algorithm. In: Communi-
cations of the ACM 20 (1977), Nr. 10, S. 762–772

[32] Brown, Peter F. ; Pietra, Vincent J D. ; Mercer, Robert L. ; Pietra, Stephen
A D. ; Lai, Jennifer C.: An estimate of an upper bound for the entropy of English.
In: Computational Linguistics 18 (1992), Nr. 1, S. 31–40

[33] Butte, Atul J.: Translational bioinformatics: coming of age. In: Journal of the
American Medical Informatics Association 15 (2008), Nr. 6, S. 709–714

[34] Cox, Simon J. ; Cox, James T. ; Boardman, Richard P. ; Johnston, Steven J.
; Scott, Mark ; O’brien, Neil S.: Iridis-pi: a low-cost, compact demonstration
cluster. In: Cluster Computing 17 (2014), Nr. 2, S. 349–358

[35] Darwin, Peter B. ; Kozlowski, Pawel: AngularJS web application development.
Packt Publ., 2013

[36] Das, Debashis: Method and system for auto discovery of IP-based network elements.
Januar 31 2006. – US Patent 6,992,985

[37] Dean, Jeffrey ; Ghemawat, Sanjay: MapReduce: simplified data processing on
large clusters. In: Communications of the ACM 51 (2008), Nr. 1, S. 107–113

[38] Fanelli, Daniele: Negative results are disappearing from most disciplines and coun-
tries. In: Scientometrics 90 (2012), Nr. 3, S. 891–904

[39] Feldstein, Bruce ; Weiss, Robert: Cambodian disaster relief: refugee camp medi-
cal care. In: American journal of public health 72 (1982), Nr. 6, S. 589–594

[40] Fette, Ian ; Melnikov, Alexey: The websocket protocol. (2011)

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965096/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965096/

BIBLIOGRAPHY 67

[41] Gaffney, John E.: Estimating the number of faults in code. In: Software Engi-
neering, IEEE Transactions on (1984), Nr. 4, S. 459–464

[42] Galvez, Carmen: Knowledge Management for Biomedical Literature: The Function
of Text-Mining Technologies in Life-Science Research. (2008)

[43] George, Lars: HBase: the definitive guide. O’Reilly Media, Inc., 2011

[44] Hickson, Ian: The websocket api. In: W3C Working Draft WD-websockets-
20110929, September (2011)

[45] Hintjens, Pieter: ZeroMQ: Messaging for Many Applications. O’Reilly Media, Inc.,
2013

[46] Hunt, Patrick ; Konar, Mahadev ; Junqueira, Flavio P. ; Reed, Benjamin:
ZooKeeper: Wait-free Coordination for Internet-scale Systems. In: USENIX Annual
Technical Conference Bd. 8, 2010, S. 9

[47] Hunter, Lawrence ; Cohen, K B.: Biomedical language processing: what’s beyond
PubMed? In: Molecular cell 21 (2006), Nr. 5, S. 589–594

[48] Inglesby, Thomas V. ; O’Toole, Tara ; Henderson, Donald A. ; Bartlett,
John G. ; Ascher, Michael S. ; Eitzen, Edward ; Friedlander, Arthur M. ;
Gerberding, Julie ; Hauer, Jerome ; Hughes, James u. a.: Anthrax as a biological
weapon, 2002: updated recommendations for management. In: Jama 287 (2002), Nr.
17, S. 2236–2252

[49] Inoue, Hiroshi ; Hayashizaki, Hiroshige ; Wu, Peng ; Nakatani, Toshio: Adap-
tive multi-level compilation in a trace-based Java JIT compiler. In: ACM SIGPLAN
Notices Bd. 47 ACM, 2012, S. 179–194

[50] King, Ritchie S.: The top 10 programming languages [The Data]. In: Spectrum,
IEEE 48 (2011), Nr. 10, S. 84–84

[51] Koren, Jonathan ; Zhang, Yi ; Liu, Xue: Personalized interactive faceted search.
In: Proceedings of the 17th international conference on World Wide Web ACM, 2008,
S. 477–486

[52] Lattner, Chris ; Adve, Vikram: LLVM: A compilation framework for lifelong
program analysis & transformation. In: Code Generation and Optimization, 2004.
CGO 2004. International Symposium on IEEE, 2004, S. 75–86

[53] Leaman, Robert ; Gonzalez, Graciela u. a.: BANNER: an executable survey of
advances in biomedical named entity recognition. In: Pacific Symposium on Biocom-
puting Bd. 13 Citeseer, 2008, S. 652–663

68 BIBLIOGRAPHY

[54] Lezius, Wolfgang ; Rapp, Reinhard ; Wettler, Manfred: A freely available
morphological analyzer, disambiguator and context sensitive lemmatizer for German.
In: Proceedings of the 17th international conference on Computational linguistics-
Volume 2 Association for Computational Linguistics, 1998, S. 743–748

[55] Lipscomb, Carolyn E.: Medical subject headings (MeSH). In: Bulletin of the
Medical Library Association 88 (2000), Nr. 3, S. 265

[56] Liu, Haibin ; Christiansen, Tom ; Baumgartner Jr, William A. ; Verspoor,
Karin: BioLemmatizer: a lemmatization tool for morphological processing of biomed-
ical text. In: J. Biomedical Semantics 3 (2012), Nr. 3, S. 17

[57] Loreto, Salvatore ; Saint-Andre, P ; Salsano, S ; Wilkins, G: Known issues
and best practices for the use of long polling and streaming in bidirectional http. In:
Internet Engineering Task Force, Request for Comments 6202 (2011), Nr. 2070-1721,
S. 32

[58] Mahoney, Matt: The PAQ Data Compression Programs. http://mattmahoney.
net/dc/paq.html. – Accessed 2015-05-10

[59] Manning, Christopher D. ; Raghavan, Prabhakar ; Schütze, Hinrich: Introduc-
tion to information retrieval. Bd. 1. Cambridge university press Cambridge, 2008

[60] Nadeau, David ; Sekine, Satoshi: A survey of named entity recognition and
classification. In: Lingvisticae Investigationes 30 (2007), Nr. 1, S. 3–26

[61] Nielsen, Henrik F. ; Gettys, James ; Baird-Smith, Anselm ; Prud’hommeaux,
Eric ; Lie, Håkon Wium ; Lilley, Chris: Network performance effects of HTTP/1.1,
CSS1, and PNG. In: ACM SIGCOMM Computer Communication Review Bd. 27
ACM, 1997, S. 155–166

[62] Ousterhout, John ; Douglis, Fred: Beating the I/O bottleneck: A case for log-
structured file systems. In: ACM SIGOPS Operating Systems Review 23 (1989), Nr.
1, S. 11–28

[63] O’Neil, Patrick ; Cheng, Edward ; Gawlick, Dieter ; O’Neil, Elizabeth: The
log-structured merge-tree (LSM-tree). In: Acta Informatica 33 (1996), Nr. 4, S.
351–385

[64] Pant, Sangam ; Andre, David L. ; Watson, Gray ; Green, Richard M. ; Schiegg,
Michael J.: Computer system with user-controlled relevance ranking of search results.
01 2000. – US Patent 6,012,053

http://mattmahoney.net/dc/paq.html
http://mattmahoney.net/dc/paq.html

BIBLIOGRAPHY 69

[65] Paulussen, Hans ; Martin, Willy: Dilemma-2: a lemmatizer-tagger for medi-
cal abstracts. In: Proceedings of the third conference on Applied natural language
processing Association for Computational Linguistics, 1992, S. 141–146

[66] Pinheiro, Eduardo ; Weber, Wolf-Dietrich ; Barroso, Luiz A.: Failure Trends
in a Large Disk Drive Population. In: FAST Bd. 7, 2007, S. 17–23

[67] Porter, Martin F.: Snowball: A language for stemming algorithms. 2001

[68] Rebholz-Schuhmann, Dietrich ; Kirsch, Harald ; Couto, Francisco: Facts from
text—Is text mining ready to deliver? In: PLoS biology 3 (2005), Nr. 2, S. e65

[69] Rocktäschel, Tim ; Weidlich, Michael ; Leser, Ulf: ChemSpot: a hybrid
system for chemical named entity recognition. In: Bioinformatics 28 (2012), Nr. 12,
S. 1633–1640

[70] Sanner, Michel F. u. a.: Python: a programming language for software integration
and development. In: J Mol Graph Model 17 (1999), Nr. 1, S. 57–61

[71] Shannon, Claude E.: Prediction and entropy of printed English. In: Bell system
technical journal 30 (1951), Nr. 1, S. 50–64

[72] Sompel, Herbert van d. ; Nelson, Michael L. ; Lagoze, Carl ; Warner, Simeon:
Resource harvesting within the OAI-PMH framework. In: D-Lib Magazine; 2004
[10] 12 (2004)

[73] Stonebraker, Michael ; Cetintemel, Ugur: "One size fits all": an idea whose
time has come and gone. In: Data Engineering, 2005. ICDE 2005. Proceedings. 21st
International Conference on IEEE, 2005, S. 2–11

[74] Taylor, Ronald C.: An overview of the Hadoop/MapReduce/HBase framework
and its current applications in bioinformatics. In: BMC bioinformatics 11 (2010),
Nr. Suppl 12, S. S1

[75] UniProt Consortium u. a.: The universal protein resource (UniProt). In: Nucleic
acids research 36 (2008), Nr. suppl 1, S. D190–D195

[76] Van Rossum, Guido u. a.: . In: USENIX Annual Technical Conference Bd. 41, 2007

[77] Vlachos, Andreas: Tackling the BioCreative2 gene mention task with conditional
random fields and syntactic parsing. In: Proceedings of the Second BioCreative Chal-
lenge Evaluation Workshop; 23 to 25 April 2007; Madrid, Spain, 2007, S. 85–87

70 BIBLIOGRAPHY

[78] Wachinger, Benedikt: Next Generation Knowledge Extraction from Biomedi-
cal Literature with Semantic Big Data Approaches, München, Technische Univer-
sität München, Diss., 2013, Diss., 2013. https://mediatum.ub.tum.de/download/
1127871/1127871.pdf

[79] Wang, Yanli ; Xiao, Jewen ; Suzek, Tugba O. ; Zhang, Jian ; Wang, Jiyao ;
Bryant, Stephen H.: PubChem: a public information system for analyzing bioac-
tivities of small molecules. In: Nucleic acids research 37 (2009), Nr. suppl 2, S.
W623–W633

[80] Weil, Sage A. ; Brandt, Scott A. ; Miller, Ethan L. ; Long, Darrell D. ;
Maltzahn, Carlos: Ceph: A scalable, high-performance distributed file system.
In: Proceedings of the 7th symposium on Operating systems design and implementa-
tion USENIX Association, 2006, S. 307–320

[81] White, Tom: Hadoop: the definitive guide. O’Reilly Media, Inc., 2009

[82] Wright, Kwame ; Gopalan, Kartik ; Kang, Hui: Performance analysis of various
mechanisms for inter-process communication. In: Operating Systems and Networks
Lab, Dept. of Computer Science, Binghamton University (2007)

https://mediatum.ub.tum.de/download/1127871/1127871.pdf
https://mediatum.ub.tum.de/download/1127871/1127871.pdf

Appendix A

YakDB YDF format specification

YDF is a data format to store a single YakDB table into one table.
Where applicable, the YDF file should use the .ydf file extension.
Values in the YDF format shall be stored in little-endian mode. Binary fields in the
specification shall be written to the file in the order they occur in the specification. The
file format must follow this scheme:

• Magic word, 0x6DDF, 16 bits

• Version word, 0x0001, 16 bits

• Arbitrary number of key-value structures:

– Magic word, 0x6DE0, 16 bits

– Key length in bytes, unsigned integral 64 bits

– Value length in bytes, unsigned integral 64 bits

– Binary key

– Binary value

71

Appendix B

Open data

In order to support derivative works, this thesis is published under the CC BY 2.0 DE
license, see https://creativecommons.org/licenses/by/2.0/de/

All source code for Translatron and all source file for this thesis are available on GitHub at
https://github.com/ulikoehler/Translatron and https://github.com/ulikoehler/
Bachelor and on the CD included with this thesis.

A test server for Translatron, using all PMC documents from ACS journals and MeSH +
UniProt as ontology is available at http://translatron.localgrid.de:8080/.

72

https://creativecommons.org/licenses/by/2.0/de/
https://github.com/ulikoehler/Translatron
https://github.com/ulikoehler/Bachelor
https://github.com/ulikoehler/Bachelor
http://translatron.localgrid.de:8080/

	Introduction
	Results
	Translatron's architecture
	Autonomous text mining software - an introductory use case
	Requirements for resource-constrained text mining
	Domain-specific text mining
	Types of resource constraints
	YakDB - a database for inverted index applications
	Clustered architecture
	Redundancy
	MapReduce & distributed data processing capability
	Extensibility
	Named Entity Recognition

	Algorithms for resource-efficient text mining
	PRIMORDIAL indexing
	PRAISER merge operator
	PERSIST single token indices
	PRESIDE prefix search
	PRO-PANE result ordering
	FiT-NESS multi-token NER
	WESTSIDE client interface

	Summary & Outlook
	Limitations of Translatron
	Missing semantic features
	Cluster use of Translatron
	Lower memory thresholds
	Lack of configurability
	Limited import capability
	Limited reindexing support
	Platform support

	Future developments

	List of Figures
	Bibliography
	YakDB YDF format specification

