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Introduction SIMAP

SIMAP I

Similarity Matrix of Proteins:

Database of protein
similarities
Compares all-against-all
Currently ~73 million protein
sequences
→ 5.3 · 1015 alignments
BOINC-SIMAP: distributed
computing
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Introduction SIMAP

SIMAP II

Currently uses FASTA algorithm (fast, but
suboptimal heuristics)
For high-scoring hits, Smith-Waterman is currently
in use
Smith-Waterman provides better accuracy
Requires efficient, parallelized implementation
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Introduction Hardware

Computational hardware

CPU: ~1-12 cores, available
anywhere

GPU: 1000+ cores, good
availability

FPGA
(field programmable gate array)

Configurable number of cores
Difficult to use
Expensive
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Parallelization and OpenCL OpenCL

OpenCL

Programming framework for parallel computing
Top level abstraction for low level routines
Runs on CPUs, GPUs & FPGAs without
modification
Driver optimizes code for specific devices
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Parallelization and OpenCL Smith-Waterman

Smith-Waterman parallelization

Intra-task Inter-task
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Parallelization and OpenCL Padding & sizeclasses

Sequence length optimization

Maximal efficiency of Smith-Waterman implementation:
For many optimizations, we need sequences with
equal length
Equal length can boost performance by multiple
magnitudes
Pad sequence with ε

Alignment score must not change
→ Substitution score: −∞
Problem: Padding increases matrix size
→ Large overhead
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Parallelization and OpenCL Padding & sizeclasses

Sizeclasses

Solution: Extension sizeclasses / Adaptive binning

Divide sequence length
into different classes
Pad only within one
sizeclass
Multiple sizeclasses
reduce overall padding

A K L ε ε

A . . . . . . . . . 0 0
C . . . . . . . . . 0 0
M . . . . . . . . . 0 0
M . . . . . . . . . 0 0
L . . . . . . . . . 0 0
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Parallelization and OpenCL Padding & sizeclasses
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Results and benchmarks CLSW Implementation details

CLSW: OpenCL Smith-Waterman

Objective: Develop proof-of-concept score-only
OpenCL Smith-Waterman
Use inter-task parallelization
All-against-all with affine gap costs
Can be used to build vendor-independent fast
Smith-Waterman implementation

Köhler U, Smirnov A (LMU, TUM) Efficient S/W using OpenCL February 24th, 2014 11 / 21



Results and benchmarks Implementation

Implementation aspects

Written in pure C++11 & OpenCL 1.1
No external dependencies, compact binary
Tested with SIMAP subset
Verified using SeqAn library
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Results and benchmarks Advantages

Core advantages

SWIPE : Integer ↔ CLSW : Floating point
→ Composition based score adjustment
→ Higher accuracy
Concise codebase:
< 1,000 C++ lines of code
OpenCL Smith-Waterman: <50 lines of code
(SWIPE: 10,000 lines of code)
Existing implementations are based on CUDA
→ Only runs on NVidia GPUs
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Results and benchmarks Outlook
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Results and benchmarks Outlook
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Results and benchmarks Outlook

Integration into SIMAP

Since 2005, only CPU clients
Since 2014, also ARM client for Android
Users ask for GPU clients regularly since 2005
CLSW was built to be integratable into BOINC →
Leverage huge amount of computing power
Still, a lot of work needs to be done...
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Results and benchmarks Outlook

Other uses

3-4 times faster than SWIPE for short query
sequences
→ Shotgun proteomics, NGS?
Huge optimization potential
→ Reduce overhead, 5-10x speedup
Platforms unsupported by SWIPE (e.g. 32 bit
platforms)
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Conclusion

Conclusion

CLSW: Portable, GPU-based Smith-Waterman
Fast for small queries, can be optimized for large
queries
Floating point score calculation
→ Composition-based score adjustment
GPU computing is underestimated in computational
biology
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Conclusion Acknowledgements

Thank you for your attention!

Special thanks to Mathias Walter & Thomas Rattei who
made this project possible!

Questions?
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Advanced Topics Kernel sizeclasses
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Advanced Topics Sizeclass mathematical background

Sizeclass: (α · ∑ sizeclass penalty) + (β · |sizeclass|)
Difficult to determine optimal values for α and β
Idea: Use population quantiles (e.g. q0.01% to q100%)
as sizeclass boundaries.
Postprocessing:
Divide sizeclasses with penalty > threshold
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