

Efficient all-against-all protein similarity
matrix computation using OpenCL

Genome-oriented bioinformatics lab - WS2013/2014

Uli Köhler & Anton Smirnov

LMU & TUM
Helmholtz-Zentrum München

Supervisor: Mathias Walter

February 24th, 2014

Introduction SIMAP

SIMAP I

Similarity Matrix of Proteins:

Database of protein
similarities
Compares all-against-all
Currently ~73 million protein
sequences
→ 5.3 · 1015 alignments
BOINC-SIMAP: distributed
computing

p1 p2 p3

p1 − 5 . . .
p2

. . . − . . .
p3

. . . 170 −

Köhler U, Smirnov A (LMU, TUM) Efficient S/W using OpenCL February 24th, 2014 3 / 21

Introduction SIMAP

SIMAP II

Currently uses FASTA algorithm (fast, but
suboptimal heuristics)
For high-scoring hits, Smith-Waterman is currently
in use
Smith-Waterman provides better accuracy
Requires efficient, parallelized implementation

Köhler U, Smirnov A (LMU, TUM) Efficient S/W using OpenCL February 24th, 2014 4 / 21

Introduction Hardware

Computational hardware

CPU: ~1-12 cores, available
anywhere

GPU: 1000+ cores, good
availability

FPGA
(field programmable gate array)

Configurable number of cores
Difficult to use
Expensive

Köhler U, Smirnov A (LMU, TUM) Efficient S/W using OpenCL February 24th, 2014 5 / 21

Parallelization and OpenCL OpenCL

OpenCL

Programming framework for parallel computing
Top level abstraction for low level routines
Runs on CPUs, GPUs & FPGAs without
modification
Driver optimizes code for specific devices

Köhler U, Smirnov A (LMU, TUM) Efficient S/W using OpenCL February 24th, 2014 6 / 21

Parallelization and OpenCL Smith-Waterman

Smith-Waterman parallelization

Intra-task Inter-task

Köhler U, Smirnov A (LMU, TUM) Efficient S/W using OpenCL February 24th, 2014 7 / 21

Parallelization and OpenCL Padding & sizeclasses

Sequence length optimization

Maximal efficiency of Smith-Waterman implementation:
For many optimizations, we need sequences with
equal length
Equal length can boost performance by multiple
magnitudes
Pad sequence with ε

Alignment score must not change
→ Substitution score: −∞
Problem: Padding increases matrix size
→ Large overhead

Köhler U, Smirnov A (LMU, TUM) Efficient S/W using OpenCL February 24th, 2014 8 / 21

Parallelization and OpenCL Padding & sizeclasses

Sizeclasses

Solution: Extension sizeclasses / Adaptive binning

Divide sequence length
into different classes
Pad only within one
sizeclass
Multiple sizeclasses
reduce overall padding

A K L ε ε

A 0 0
C 0 0
M 0 0
M 0 0
L 0 0

Köhler U, Smirnov A (LMU, TUM) Efficient S/W using OpenCL February 24th, 2014 9 / 21

Parallelization and OpenCL Padding & sizeclasses

0

30000

60000

90000

0 500 1000 1500 2000
Sequence length [AA]

A
bs

ol
ut

e
fr

eq
ue

nc
y

SIMAP sequence length distribution

Köhler U, Smirnov A (LMU, TUM) Efficient S/W using OpenCL February 24th, 2014 10 / 21

Results and benchmarks CLSW Implementation details

CLSW: OpenCL Smith-Waterman

Objective: Develop proof-of-concept score-only
OpenCL Smith-Waterman
Use inter-task parallelization
All-against-all with affine gap costs
Can be used to build vendor-independent fast
Smith-Waterman implementation

Köhler U, Smirnov A (LMU, TUM) Efficient S/W using OpenCL February 24th, 2014 11 / 21

Results and benchmarks Implementation

Implementation aspects

Written in pure C++11 & OpenCL 1.1
No external dependencies, compact binary
Tested with SIMAP subset
Verified using SeqAn library

Köhler U, Smirnov A (LMU, TUM) Efficient S/W using OpenCL February 24th, 2014 12 / 21

Results and benchmarks Advantages

Core advantages

SWIPE : Integer ↔ CLSW : Floating point
→ Composition based score adjustment
→ Higher accuracy
Concise codebase:
< 1,000 C++ lines of code
OpenCL Smith-Waterman: <50 lines of code
(SWIPE: 10,000 lines of code)
Existing implementations are based on CUDA
→ Only runs on NVidia GPUs

Köhler U, Smirnov A (LMU, TUM) Efficient S/W using OpenCL February 24th, 2014 13 / 21

Results and benchmarks Outlook

0

50

100

150

200

250

ssearch36 swipe swipe−MT CLSW
Program

R
un

tim
e

[s
]

1,000 x 1,000 sequences benchmark ; 1,000 AA (query) ; 1,000 AA (target)

Köhler U, Smirnov A (LMU, TUM) Efficient S/W using OpenCL February 24th, 2014 14 / 21

Results and benchmarks Outlook

0

20

40

60

ssearch36 swipe swipe−MT CLSW
Program

R
un

tim
e

[s
]

4000x1000 sequences benchmark, 20 AA (query), 1.000 AA (target)

Köhler U, Smirnov A (LMU, TUM) Efficient S/W using OpenCL February 24th, 2014 15 / 21

Results and benchmarks Outlook

Integration into SIMAP

Since 2005, only CPU clients
Since 2014, also ARM client for Android
Users ask for GPU clients regularly since 2005
CLSW was built to be integratable into BOINC →
Leverage huge amount of computing power
Still, a lot of work needs to be done...

Köhler U, Smirnov A (LMU, TUM) Efficient S/W using OpenCL February 24th, 2014 16 / 21

Results and benchmarks Outlook

Other uses

3-4 times faster than SWIPE for short query
sequences
→ Shotgun proteomics, NGS?
Huge optimization potential
→ Reduce overhead, 5-10x speedup
Platforms unsupported by SWIPE (e.g. 32 bit
platforms)

Köhler U, Smirnov A (LMU, TUM) Efficient S/W using OpenCL February 24th, 2014 17 / 21

Conclusion

Conclusion

CLSW: Portable, GPU-based Smith-Waterman
Fast for small queries, can be optimized for large
queries
Floating point score calculation
→ Composition-based score adjustment
GPU computing is underestimated in computational
biology

Köhler U, Smirnov A (LMU, TUM) Efficient S/W using OpenCL February 24th, 2014 18 / 21

Conclusion Acknowledgements

Thank you for your attention!

Special thanks to Mathias Walter & Thomas Rattei who
made this project possible!

Questions?

Köhler U, Smirnov A (LMU, TUM) Efficient S/W using OpenCL February 24th, 2014 19 / 21

Advanced Topics Kernel sizeclasses

5000

10000

15000

20000

0 500 1000 1500 2000
Buffer size

R
un

tim
e

[s
]

20 AA x 20 AA ; 4,000 x 4,000 alignment, with variable row buffer

Köhler U, Smirnov A (LMU, TUM) Efficient S/W using OpenCL February 24th, 2014 20 / 21

Advanced Topics Sizeclass mathematical background

Sizeclass: (α · ∑ sizeclass penalty) + (β · |sizeclass|)
Difficult to determine optimal values for α and β
Idea: Use population quantiles (e.g. q0.01% to q100%)
as sizeclass boundaries.
Postprocessing:
Divide sizeclasses with penalty > threshold

Köhler U, Smirnov A (LMU, TUM) Efficient S/W using OpenCL February 24th, 2014 21 / 21

	Introduction
	SIMAP
	Hardware

	Parallelization and OpenCL
	OpenCL
	Smith-Waterman
	Padding & sizeclasses

	Results and benchmarks
	CLSW Implementation details
	Implementation
	Advantages
	Outlook

	Conclusion
	Acknowledgements

	Advanced Topics
	Kernel sizeclasses
	Sizeclass mathematical background

