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1. Introduction

1. Introduction
Today, it is the amount of available data rather than its acquisition that poses a significant
challenge to computer science. It is the issue of extracting valuable and useful information from
increasing data volumes, and it has manifested itself throughout most of modern global digital
frameworks, like economic analysis, weather forecast, or, indeed, national security, recently
publicized in the 2013 NSA affair.

This problem remains very pronounced in the field of bioinformatics, where it is compounded
by the rapid progress in the fields of DNA and protein sequencing within the last 20 years.
Methods like next generation sequencing provide a low-cost experimental approach and their
wide adaptation has led to an exponential growth in biological data. The frontier, so to
speak, is now the attempt to understand all this data well enough to make it useful in a
variety of scientific and industrial contexts, including, but not limited to, evolutionary biology,
biochemistry, pharmaceutics and medicine.
To deal with this obstacle, a possible approach is to divide the computation in question

into as many independent parts as possible, and then compute those parts on many machines.
This idea of distributed computing may be seen in many examples, like Rosetta@home1 or
Folding@home2, both using the BOINC framework (Berkeley Open Infrastructure for Network
Computing) to distribute their computations.

A second approach, one that may also be used in tandem with distributed computing, is the
idea to parallelize computation on multiple cores, be it the CPU or the GPU. This concept is
becoming increasingly important with the growing availability of multi-core processors and the
number of cores installed on common chipsets.

In the field of bioinformatics, the issue of the computational demands of analyzing tremendous
amounts of data exceeding computational capacities may be found in different forms: be it the
analysis of genome-wide association studies, genome-wide searches for ORFs, or in database-wide
comparisons of all sorts of biological data, especially when an all-against-all comparison is
required.

One such instance, requiring the comparison of all known protein sequence to each other, may
be found in the SIMAP project.

2. SIMAP
SIMAP, the Similarity Matrix of Proteins (see [ART+05,RTA+08,RTG+10]), is an effort aimed
at creating a comprehensive database containing a measure of similarity for all pairs of known
protein sequences. This similarity is calculated by performing a pairwise alignment of all

1See [RSMB04]
2See [LSS+02]
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2. SIMAP

sequences versus all sequences, yielding a similarity score for any pair of proteins. Such a
similarity score is useful since it allows, for example, the functional prediction on aminoacid
sequences based on homology. Since 2011, SIMAP has been crosslinked with the STRING
database (see [VMHJ+03,JKS+09,SFK+11]).

As of now, the pairwise alignment of sequences is performed using FASTA (see [LP85]), with
the Smith-Waterman score recomputed for sequences showing a similarity exceeding a predefined
threshold3. As of writing this report, 80 is used as threshold – while a lower threshold could
improve overall accuracy, it would require a significantly larger number of Smith-Waterman
alignments to be computed.
Smith-Waterman, being an exhaustive algorithm yielding the optimal result as opposed to

FASTA using heuristics to speed up the computation at the cost of accuracy, is computationally
more demanding with an asymptotic runtime complexity of O(n2) and is therefore used for
high-scoring hits only. While this accuracy-vs-speed tradeoff does not pose a problem for
sequences with low overall similarity, SIMAP requires accurate scores for high-scoring hits in
order to be able to accurately predict function based on homology.

Even if the majority of the pairwise alignments is computed using FASTA, the current SIMAP
database contains more than 7 · 107 sequences, requiring the computation of more than 4.9 · 1015

alignments. In order to cope with the massive amount of alignments to be computed, SIMAP
uses the BOINC4 framework to distribute the work to a large number of volunteers donating
their CPU time while their computer is idle. This approach not only reduces the total project
costs dramatically, but also allows SIMAP to compute similarities of new protein sequences in
only a few weeks to months because of the massive amount of computational resources available.
Although BOINC lets three different computers run any single workunits to be able to

filter out computers producing incorrect results and therefore triples the overall amount of
computations to be performed, the overall processing speed is significantly faster for projects
using BOINC.

IO as limiting factor in SIMAP While one might argue that SIMAP processes large amounts
of data, and therefore not computation but IO is the limiting resource.
However, it’s clearly evident that n sequences require O(n2) to be computed and therefore

the input part of the IO and available storage space does not limit the number of sequences
that can be used in SIMAP.
However, as each of said O(n2) produces an output, one must also take into account the

amount of output generated.
Currently, SIMAP uses about 60 TiB of storage space to storage the alignment scores for

any protein pair, plus some metadata in compressed form. While this is outside the range of

3A comparison of Smith-Waterman and FASTA regarding selectivity & sensitivity can be found in [Pea91]
4Berkeley Open Infrastructure for Network Computing
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3. Alternative computational hardware

standard computers, specialized storage arrays are easily capable of storing this amount of data.
The same applies for the network IO to and from the BOINC clients. Even in uncompressed

form, each client will get less than a few million sequences and compute any pairwise alignment
score for said sequences, yielding less than a few megabytes of alignment scores.
SIMAP currently computes the alignment itself (in contrast to the score) on-demand, i.e.

when accessing their web interface.
Saving the alignment in addition to the score only would require a significantly larger amount

of storage space. A hypothetical solution would be to only store alignments for high-scoring
hits, however it is questionable if the overall computational effort of recomputing and storing
the backtracked alignments can be justified by only a few usecases requiring a mass-retrieval of
alignments.
Although the storage problem in SIMAP is still largely unresolved and we believe that it

requires further exploration, it’s evident that because of the massive number of computational
effort (score-only Smith-Waterman being ∈ O(n2), yielding an overall O(n4) for n sequences)
required for each input sequence computational speed rather than bare IO is the limiting factor
for SIMAP.

3. Alternative computational hardware
Most software being written today is designed for CPU platforms. While CPUs are widely
available and have well-understood performance characteristics (see [Fog14]), they are designed
as a general computational platform and therefore don’t provide sufficient computational power
for some problems. SIMAP, for example, currently runs on CPUs exclusively – although no
computational hardware can fully resolve this problem, currently adding only a few thousand
protein sequences results in billions of alignments having to be computed, resulting in a week-long
computation duration.
In the context of shotgun protein sequencing techniques (see [BCP07,MY02]), allowing a

large amount of protein sequences to be generated in a short amount of time, SIMAP might not
be able to keep up with the steady inflow of protein sequences.
While there are specialized hardware accelerators, most of which are based on FPGAs5

(see [JLX+07,HJL+07,ACL+09]) or even on ASICs6 like SAMBA (see [GJL97]), those methods
are expensive and obsolesce quickly: While SAMBA provided outstanding performance in
1997, one can expect even recent mobile handheld devices to outperform its computation
speed. FPGA- and ASIC-based approaches gain their speed advantage by being able to be
configured on a boolean logic level instead of using instructions sets for execution, making the

5Floating Programmable Gate Array
6Application Specific Integrated Circuit
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3. Alternative computational hardware

development process complex and difficult to debug – however, this approach allows nearly
unlimited parallelism and minimized latency.

In the case of SIMAP these technologies can’t be used in conjunction with BOINC, because
none of the BOINC volunteers have such accelerators at their disposal. One area where
ASIC and FPGA accelerators are unrivaled is in areas where realtime computation is required
(see [VDRN11]).

A more commonly available device type whose use in bioinformatics has grown rapidly
during the last years is the graphics card. Although it is normally used to compute large 3D
environments and display those on a screen, its special architecture – allowing it to compute
said 3D environments efficiently – can be leveraged by specialized GPGPU7 applications.

While most modern CPUs have between 2 and 16 physical cores, GPUs have several hundreds
to thousands. Although each single GPU core has fewer capabilities than a CPU core, the high
parallelism and specialized hardware components for efficient linear algebra computations allow
researchers to benefit from the massive computational power in GPUs (see [Sch11,Lan12,CTS05,
VLM11,Far10]). Even if not all problems are suitable for GPUs – including for reasons like the
inability of GPU cores to run recursive algorithms and dynamic memory allocation – speedups
by multiple orders of magnitude are possible for some applications (see [BBH12]), although most
applications will only achieve a speedup of less than one order of magnitude (see [WDJ+07]).

3.1. GPGPU programming frameworks

When porting an algorithm to GPU-based platforms, the developer has to choose an underlying
framework that allows running the computation on GPUs.
Although there is a multitude of different backends optimized for specialized tasks and/or

devices, three major frameworks allow generalized implementation of algorithms using GPGPU
technology.

• CUDA8, the first generalized GPGPU framework available and therefore widely used
(see [LR09, LMS09,BBH12]), however limited to only GPUs manufactured by NVidia
Corp.

• ATI Stream, the ATI/AMD Corp. analogon to CUDA – not very widely used and limited
to AMD/ATI GPUs

• OpenCL9, a vendor-independent standard that allows programs to run on any computa-
tional hardware providing a compiler for the OpenCL source code

7General-Purpose GPU
8Compute unified device architecture
9Open Computing Language
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While OpenCL (see [KSA+10]) is a more general approach to CUDA and might therefore
provide worse performance in some usecases, applications can run vendor-independently on
CPUs, GPUs and even some FPGA-based platforms. Although CUDA is used more widely10, the
distributed-computing approach can leverage more idle resources by using a vendor-independent
computing framework, because the hypothetical minor performance advantages of CUDA
(see [FVS11,TNI+10,KDH10,SJL11,DMM+10,RVDDB10]) are expected to be outweighed by
the large number AMD GPUs that would otherwise not be used. Although many projects remain
using CUDA, some have ported their code to OpenCL for these reasons (see [Har09,DWL+12]).
OpenCL has a pluggable architecture: Each device that is capable of running programs written

in OpenCL provides a so-called ICD11 that provides a compiler to transform OpenCL sourcecode
into a device-specific binary and the necessary APIs to transfer data to and from the device. By
using the OpenCL library provided by the OpenCL consortium, a program can access any ICD
installed on the system, without being limited to only one of the computational accelerators
available on the specific system.

Both OpenCL and CUDA allow the developer to specify a multi-dimensional discrete space of
tasks to be performed. The device-specific scheduler then assigns said tasks to the available
hardware cores and optimizes the sourcecode according to the specific characteristics of the
accelerator device in use.
Besides using distributed computing for GPGPU computation, OpenCL also provides the

flexibility to use not only NVidia computation-specific GPU platforms like the Kepler architecture
(see [TLHC14]), but also platforms like the Intel Xeon Phi (see [CSKM12,JR13]).

4. CLSW
A significant amount of research has been performed in creating a GPGPU application acceler-
ating the Smith-Waterman algorithm (see [LR09,MV08,LBH09,DBL+10,RMG+10]). However,
besides CUDASW++ (see [LMS09]), those projects don’t seem to be ready for production
use but only built as proof-of-concept for GPGPU-Smith-Waterman – although CUDASW++
would be usable, it is not only specific to NVidia GPUs, but newer versions have been optimized
specifically for the Kepler architecture of NVidia computation accelerator cards (see [LWS13])
– therefore, the software is expected to exhibit worse performance when using on non-Kepler
cards, such as those in use by the BOINC volunteers providing their GPU for research purposes.
Therefore, the goal of our lab project was to develop an OpenCL-based Smith-Waterman

application specifically for the SIMAP usecase. We call our newly developed software CLSW 12,

10An important factor to explain this is a massive marketing effort from NVidia to distribute their proprietary
platforms

11Installable client driver – for GPUs, the ICD is usually installed with the graphics card driver
12[Open]CL Smith-Waterman
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5. Smith-Waterman parallelization strategies

stressing the OpenCL-based backend.
Although it was impossible to develop a complex application beyond a proof-of-concept

state in the severely limited timeframe of two weeks, CLSW turned out to exhibit outstanding
performance characteristics in some special cases (see section 5.5 on page 20) and can therefore
be considered usable beyond SIMAP.

In this section, we will introduce core concepts in use by SIMAP, specifically our algorithms
QUANTMASS (see section 5.3 on page 15), GIVE-SWAP (see section 5.7.5 on page 34), and
TESSIN (see section 5.7.6 on page 35). Although only QUANTMASS is fully implemented
in the CLSW toolkit, they represent methods of optimizing CLSW even further in order to
compete with existing tools in terms of runtime performance.

5. Smith-Waterman parallelization strategies
As GPGPU programming requires the underlying algorithms to be parallelizable, we need to
review different parallelization strategies for the Smith-Waterman algorithm.

Although any strategy has advantages and disadvantages and different approaches have been
followed by previous implementations (see e.g. [RMG+10]), for the SIMAP-specific case we have
to consider that a large amount of computational resources is required not because of a few
large alignments (e.g. genome-to-genome alignments), but because of a huge number of shorter
alignments.

Intra-task Inter-task

Figure 1: Smith-Waterman parallelization strategies

We can generally separate Smith-Waterman parallelization strategies into two main classes:

• intra-task parallelization and

• inter-task parallelization.

Intra-task parallelization, as shown on the left of figure 1, refers to the the attempt to
parallelize the calculation of a single alignment matrix. This approach is made possible by

9



5. Smith-Waterman parallelization strategies

the fact that within said matrix, each cell depends solely on the cell directly above it, the cell
diagonally to the upper left and the cell directly to the left of said cell.
While at the beginning one can’t compute more than one cell, after each iteration, one

additional cell can be computed in parallel. Without loss of generality it can be shown that for
a symmetric13 matrix the maximum parallelism is b

√
2 · n2c, because maximum parallelism is

reached when computing the bottom-left-to-top-right diagonal in parallel. After reaching this
maximum, the parallelism decreases.
In contrast to intra-task parallelization computing a single matrix in parallel, inter-task

parallelization follows the simple approach of computing multiple matrices (i.e. alignment scores)
concurrently – each alignment is only computed by a single core, rendering synchronization
mechanisms redundant. This approach only works sufficiently well if enough alignment tasks are
available to use all cores of the underlying hardware. While this might not be the case for other
projects, SIMAP requires a large number of alignments to be computed, therefore enabling the
possibility to use the simpler inter-task parallelism approach.

Inter-task-parallelism can run in linear memory in respect to the query sequence size, because
when computing one row at a time, only the current row and the previous row need to be saved.
See section 5.4.4 on page 18 and section 5.4.2 on page 18 for a detailed discussion regarding
CLSW memory usage. The effective parallelism is only limited by the number of alignments
available.
Although it’s possible to combine multiple intra-task-parallelized computations in an inter-

task-parallelized manner, we expect this concept to be difficult to implement and prone to
errors, because both OpenCL and CUDA provide only limited control over the execution order
of threads. Moreover, any control exerted is likely to reduce the overall effective parallelism due
to forced serialization.
Initial development versions of CLSW were based on intra-task parallelization because this

approach has been used in previous work relating to OpenCL (see [RMG+10]). However, our
application initially did not compute correct results according to the validation described in
section 5.4.6 on page 19, but it proved to be significantly slower than the current inter-task
approach, because of computational overhead incurred by converting the coordinates in the
matrix diagonal currently being computed in parallel (resembling discretized polar coordinates)
to the Cartesian coordinates required in order to compute the aminoacid substitution correctly.
Furthermore, most hardware cores ran in an idle state throughout a large part of the matrix,
because we had to reserve b

√
2 · n2c cores initially to achieve maximum hardware parallelism in

the matrix diagonal.
We believe that most of these issues can be removed by further optimizations; inter-task

implementation has, however, proven to be significantly easier to implement than the intra-task
approach. If applicable to the specific problem, we therefore conclude that the inter-task-based
13i.e. a matrix having the same width as its height
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5. Smith-Waterman parallelization strategies

A K L ε ε

A .. . . . . . . . 0 0
C . . . . . . . . . 0 0
M .. . . . . . . . 0 0
M .. . . . . . . . 0 0
L . . . . . . . . . 0 0

Table 1: Sequence extension concept. Shown is a hypothetical Smith-Waterman alignment of
two sequences within a sizeclass with the length 5. Therefore, the shorter sequence
of 3 aminoacids is “padded” with two ε characters, marked in yellow. Because their
value is −∞, the values of the cells within the respective columns become 0, thereby
not altering the matrix maximum.

approach provides a simpler, yet overall more efficient approach to the problem on GPUs.

5.1. Sequence extension sizeclasses

In order to use memory efficiently – on GPUs this is even more important than on CPUs,
as shown in 5.2 on page 14 – we need to make sure the input sequence arrays14 are stored
in-memory in a way that allows the start address and length of any sequence to be computing
using linear addressing15 (i.e. offset+ i · n where n is a constant and i is the number of the
sequence that needs to be accessed). In order to fulfill this condition, it is obviously required
that any sequence in the sequence array is extended to the same sequence length.

In CLSW, we have implemented a concept called sequence extension that allows the software
to extend sequences using a special character ε that can be appended to the sequence. Because
we’re interested in the overall alignment score, it’s necessary that ε does not change the alignment
score at all.

As the character in the sequence only influences the substitution part of the Smith-Waterman
recursion equations (see [SW81]), it is sufficient to set the substitution score ω(·, ε) = ω(ε, ·) =
−∞. As Smith-Waterman is maximized over zero, the cells containing ε are guaranteed to have
a smaller value than the maximum value in the matrix, assuming the gap cost function has
a negative sign16. A non-negative sign removes any significance from the score, because the
Smith-Waterman algorithm will simply maximize the number of gaps instead of computing a
proper alignment.

Figure 1 illustrates an exemplary query sequence extended from 3 characters to 5 characters
by appending εε. In this case the values in the matrix are always zero for the extended parts,

14A list of sequences that can be stored in-memory sequentially
15Most hardware supports this addressing mode directly, making sequence access very efficient, see e.g. [HHM+02]
16One could also use the negated gap cost function – interpreting it as gap penalty – , in which case the sign

would need to be positive
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5. Smith-Waterman parallelization strategies

although this is not strictly required.
The SIMAP dataset contains sequences with lengths ranging from 20 aminoacids to more

than 40,000 aminoacids If one would randomly select sequences and pad them to the maximum
length in order to fulfill the linear memory addressing condition, a significant proportion of the
overall memory used would only consist of ε characters. If the implementation would compute
the matrix slices in the extended sequence parts (that are irrelevant to the alignment score),
the computational overhead of sequence extension would be massive17.

If, however, sequences would not be padded at all, the job generate would need to generate a
single computational job even for sequence arrays containing only one sequence18. Although
this effect might be desirable to some extent – as we will discuss in section 5.7.2 on page 31 – it
generally produces a significant amount of computational overhead because of job initialization
and cleanup procedures that need to be executed, plus the inability of fully leveraging parallelism
using the inter-task parallelization concept, when less alignments tasks than cores are available.
As we can neither use one large sequence array for all lengths because of massive overhead,

nor one sequence array per length (because that would lead to too many jobs being generated),
we need to group sequence lengths together. Because grouping random, non-adjacent lengths
would only result in a significant amount of overhead, in order to achieve maximum efficiency,
we need to put only adjacent lengths into one group, i.e. we’re classifying sequence length into
bins or sizeclasses – hence the name sequence extension sizeclasses.
Appropriate selection of those sizeclass bins will minimize the overall overhead. Obviously,

one sequence length must be assigned to exactly one sizeclass using the surjective transformation
SequenceLength→ Sizeclass.
Figure 2 on the following page shows the SIMAP sequence length distribution in green,

whereas an exemplary distribution of sizeclass boundaries is shown in red. Each red dashed line
separates two sizeclasses. Even if the image only shows an example, it is clearly visible that in
the area with higher density of the function number of sequences

sequence length , the average density of sizeclass
boundaries is high, because placing them further apart would mean that a large number of
sequences would need to be extended, yielding high overhead.

In section 5.3 on page 15 we will present QUANTMASS, a linear-time algorithm to heuristically
determine optimal sizeclass boundaries on a sequence length population like shown in green in
figure 2 on the following page using equivalent-distance assignments in the discrete population
quantile domain.
Initially, we expected CLSW to exhibit significantly better performance when computing

the full matrix, including extension characters. We expected this characteristic due to the
requirement that GPU cores execute the same instruction concurrently under some conditions
17As discussed in section 5.4 on page 17 regarding the branch-free design principle, it’s not possible for

performance reason to include if statements that stop processing once an extension region is reached
18While in the range of 20-1000 aminoacids there are enough sequences for any length to do this, most sequence

lengths > 10,000 occur only once
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Figure 2: Amino acid sequence length distribution within SIMAP. For demonstration purposes,
the concept of sizeclasses is illustrated by dividing this distribution into putative “bins”, or
sizeclasses (dashed red lines).

(as shown in [NVi12] – although the cited reference is NVidia-specific, we assumed that the
microarchitectures of GPUs are similar in this respect) which we were unable to define reasonably
in the OpenCL context due to the high-level-abstractions imposed by the language.
However, our tests showed that a version of the CLSW kernel that requires information

on how long the non-extended part of a sequence is (a length-aware kernel), is within 0.3%
of the runtime of a kernel that actually computes the extensions (a length-unaware kernel).
Moreover, for sequence extension sizeclasses containing a large number of extensions, we expect
the length-unaware kernel to be significantly slower than the length-aware kernel, because
submatrices generated by the extensions need to be fully computed.

These results show that – in contrast to our expectations – sequence extension sizeclass don’t
provide better performance than length-aware kernels. However, they may be highly device-
dependent, so other OpenCL-capable devices may show different performance characteristics.

Although we are not able to deduce the exact causes of aforementioned effects, we suspect that
the phenomenon is related to the AMD OpenCL ICD using LLVM (see [LA04,Lat02,LA02]).

13



5. Smith-Waterman parallelization strategies

LLVM is a partially architecture-agnostic intermediate compiler representation format and
framework which is known to be highly-optimizable, using advanced techniques like polyhedral
optimization (see [GZA+11]). It is possible that these optimizations yield a more efficient binary
representation of length-aware kernels.
Independently of the results on other devices, sequence sizeclasses are still required in order

to use memory efficiently and to reduce memory overhead, as discussed in section 5.2 and
section 5.7.6 on page 35.

5.2. Kernel sizeclasses

Based on previous experiences with GPU programming, we expect the overall performance of
the application to depend largely on memory allocation and usage behavior
GPUs have an even more complex memory architecture than CPUs: Besides multiple levels

of caches, with their exact characteristics depending on the GPU model, most GPUs are able to
allocate memory not only in the main DRAM, but also in an on-chip SRAM.
Said SRAM area is generally faster than the DRAM because it interfaces with the GPU’s

cores directly, however it is significantly smaller in size than the DRAM. By optimizing memory
allocation behavior, we can increase the likelihood of the compiler allocating an array in the
most efficient memory area available.
As the kernel source code is compiled by the OpenCL ICD and we expect this compiler to

know details about the memory areas available on the specific OpenCL device the kernel shall
be compiled for, we can safely assume the compiler places the buffers used in the kernel into the
most appropriate memory area.

Based on these assumptions, we introduce kernel sizeclasses, a concept of compiling a single
kernel for multiple query sequence sizes, in order to reduce overhead and – at the same time –
maximize computation efficiency by increasing the likelihood of buffers being allocated in fast
RAM areas.
If one single kernel would be compiled for all sequence sizes, it would lead to considerable

inefficiency: The maximum sequence size is about 40 000 aminoacids for the 2014-02 SIMAP
data dump; a kernel allocating more than 480 kilobytes of memory (sequence size, multiplied by
3 buffers for affine gap costs, multiplied by 4 byte, because buffers consist of 32-bit floating-point
variables) for each of several hundreds to thousands of jobs running in parallel would only fit in
the slowest but largest memory accessible to the GPU19.

On the other hand, if a kernel would be compiled for each sequence size, then the process of
kernel compilation – each individual compilation taking about one to two seconds for recent
GPU ICDs – would require a large proportion of the overall computation time.
19One might argue that such a kernel would not fit into memory at all for low-end graphics cards – however,

properly programmed OpenCL drivers will reduce parallelism to reduce the overall memory usage in the case
mentioned
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5. Smith-Waterman parallelization strategies

If it is detrimental to the performance to use a single kernel, but it’s also hardly possible to
use tens of thousands of kernels, we need to group adjacent sequence sizes together, i.e. assign
said sizes to classes – therefore we have the same situation as with sequence extension sizeclasses,
yielding the concept of kernel sizeclasses.

We expect the effect of kernel sizeclasses on the performance to depend significantly on both
the device and the ICD version.

5.3. QUANTMASS - A metric for sizeclass selection

A question that is unanswered so far is how to optimally select both kernel sizeclasses and
sequence extension sizeclasses. As this is obviously an optimization problem, we first need to
define an error function to be minimized, which needs to incorporate the parameters:

Penalty(sc) :=
∑
s∈sc

length(s)− length(sc)

SizeScore(sc) := maxlength(sc)−minlength(sc)

where maxlength(sc) is the maximum length of any sequence (with minlength(sc) defined
accordingly) in sc and length(s) is the length of sequence s in the sizeclass sc.
While Penalty(sc) is equivalent to the negated total number of sequence extensions in said

sizeclass and therefore ensures the optimizer does not choose a single sizeclass for all sequences,
SizeScore(sc) ensures sizeclasses get a positive score proportional to the number of lengths
included in them. These functions assume that a size is assigned to exactly one sizeclass.
Based on these functions we can define a basic error function, with −→sc being the vector

containing all sizeclasses

err(−→sc) =
∑

sc∈−→sc

α ∗ Penalty(sc) + β ∗ SizeScore(sc)

When choosing α and β appropriately, we can therefore run a standard optimization algorithm
to find an optimal set of sizeclasses. However, there is no inherently correct way to choose those
parameters. Therefore we require a simple algorithm to choose sizeclasses heuristically, without
the requirement of choosing such parameters.

It is possible to simply add sizeclass boundaries on each nth sequence length. This approach
does not require extensive computation, but obviously does not minimize aforementioned error
function, because its result does not depend on the underlying sequence length distribution,
therefore not being an adaptive binning algorithm.
In this section, we will present QUANTMASS20, a simple algorithm that allows penalty-

20QUANTile Metrics for Adaptive Sizeclass Selection
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bounded selection.
QUANTMASS requires three simple steps:

1. Select n initial sizeclass boundaries: For each 1 ≤ i < n, place a sizeclass boundary at the
sequence length boundary nearest to the quantile qi/n

2. Merge sizeclass boundaries that have been placed on the same sequence length boundary

3. Compute Penalty(sc) for each sizeclass sc. For each sizeclass larger than a given penalty
threshold, recursively subdivide said sizeclass until no sizeclasses with penalties larger
than the given threshold are left.

In step 1, we can easily compute the discrete population quantiles for any sequence length
boundary by using:

ql :=

i<=l∑
i=0

NumSequences(i)

TotalSequences

TotalSequences :=
i<=MaxSeqLen∑

i=0
NumSequences(i)

which computes the discrete population quantile ql directly after the sequence length where
NumSequences(l) denotes the number of sequences having a length of exactly l andMaxSeqLen

is the maximum sequence length occurring in the dataset21.
After computing ql for any sequence length l in the underlying dataset, we can assign the

sizeclass boundaries with equivalent distances in the quantile domain instead of the sequence
length domain.
Because of the non-continuous nature of the underlying datasets, multiple quantiles may be

assigned to a single sequence length boundary, therefore we need to merge those which would
create empty or congruent sizeclasses.

As we observed for the SIMAP dataset, the approach only consisting of steps 1 and 2 generated
good results for sequence lengths shorter than about 10, 000 – sizeclasses including larger
sequences showed significantly higher penalty values: While sizeclasses for shorter sequences
had penalties < 100, the penalty values of larger sizeclasses exceeded 109 for some sizeclasses.

We can resolve this issue by selecting a penalty threshold – for the SIMAP dataset, we chose
2000 – and recursively subdividing this sizeclass, reducing the penalty in the process. For this
step it is obviously desirable to minimize the number of subdivisions as this approach will
maximize SizeScore for the sizeclass to be divided.
21Simply speaking, this formula computes what fraction of the total sequences occur before (including) the

length l
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For the SIMAP dataset, subdividing the sizeclasses at the 73% quantile proved to yield the
minimal number of sizeclasses; however, this selection might depend not only on the dataset
but also on other parameters of QUANTMASS.
Although QUANTMASS does not necessarily provide an optimal solution to the sizeclass

selection problem, it can compute a heuristic in O(n) time, with n being the number of sequence
lengths in the dataset, and is therefore suitable for large datasets like SIMAP.

5.4. Design

CLSW is implemented in C++11 using only the OpenCL library and SeqAn (see section 5.4.6
on page 19) and therefore has no external dependencies on libraries beyond OpenCL.
Because OpenCL ICDs are present on most systems anyway – assuming the graphics card

driver is installed – this results in high portability and maintainability while providing high
modularity. These aspects of CLSW are most important if CLSW is used as a BOINC GPU
application in the future, as any external dependency might introduce problems on the different
target system configurations the BOINC client will run on.
CLSW uses a branch22-minimized implementation approach that is especially important on

GPUs because any of the GPU cores that run an OpenCL kernel need to execute the same
instruction at the same point in time – if a kernel fails to fulfill this condition, the GPU scheduler
is forced to serialize the execution until common instructions are reached, effectively eliminating
any performance advantage gained by core parallelism.
Additionally, CLSW does not use ASCII-encoded aminoacid sequences but rather encodes

any character in the sequence with the 0-based index in the substitution matrix, allowing the
application to compute the substitution score in only three memory fetches23.

5.4.1. IO formats

CLSW can read MATBLAS -formatted substitution matrices and uncompressed FASTA file
directly and is therefore compatible with the input formats of similar programs.

Because of the sequence extension sizeclass implementation, the MATBLAS matrix read by the
IO module is automatically extended by an ε character (as discussed in section 5.1 on page 11),
with the substitution score set to −10, 000. Although technically only −∞ would be correct, it’s
obvious that because of the low negative substitution score, the (invalid) substitution will not
influence the overall alignment score as the cell score is maximized over 0 in Smith-Waterman.

22A branch is any point in the program flow where the program may take two different approaches, with the
probability of each branch being data-dependent and/or randomized

23While there are approaches to reduce the number of fetches to only two, these algorithms require precomputation
and have significantly increased memory consumption – as we show in section 5.5 on page 20, memory
optimization is specially important for GPU-based implementations. We will therefore not discuss those
methods in detail
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Low-complexity regions in sequence inputs are automatically uppercased, because handling
those characters in the OpenCL code without strict necessity would result in severe performance
issues.

5.4.2. Affine gap costs

Although explicitly not required in the task description, we implemented Gotoh’s algorithm
(see [Got82]) to compute alignment scores with affine gap costs. CLSW allows selection of either
non-affine or affine gap costs to demonstrate performance differences. We present benchmarks
comparing those implementations in section 5.5.4 on page 25.
For comparisons to other tools, we exclusively use the affine implementation, because all

comparable tools have been built to achieve high throughput with affine gap costs only – using
the same value for the gap-open and gap-extend penalties would therefore massively bias the
results as CLSW implements optimized methods for this case whereas SSEARCH and SWIPE
will not significantly benefit (in term of computation duration) from non-affine gap costs.

5.4.3. Kernel sizeclass implementation

CLSW uses a single OpenCL source code file containing custom macro templates. In order to
achieve maximum performance, it’s important to aid the compiler in optimizing by using as
many constants as possible.
In the case of CLSW, while sequences and their lengths need to be transferred at runtime,

parameters like the gap-open and gap-extension penalties are inserted by the template system
during compilation. Additionally, CLSW needs to store a macro for the address computation
inside the substitution matrix, as said address depends on the number of characters in the
substitution matrix, which might vary24.

The most important macro is the maximum row buffer size, directly implementing the kernel
sizeclass concept as introduced in section 5.2 on page 14: With this parameter set to – for
example – 50, query sequences up to 49 characters can be processed. Even if OpenCL does
not guarantee the compiler allocates this constant-sized area in an efficient memory area, we
increase the likelihood of performance increase dramatically.

5.4.4. Memory usage

Fast memory is a scarce resource on any computation platform. Our results (see section 5.5 on
page 20, especially the results in section 5.2 on page 14) show that GPU-based computation is
even more sensitive to suboptimal memory usage patterns than normal CPU-based software,
especially for memory that is accessed frequently (see [Fag10]).

24Although the NCBI matrices contain 22 characters, some matrices and sequence sets might for example not
contain a X character
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As aforementioned, CLSW uses the inter-alignment parallelism approach. Assuming we only
require the alignment score and not the alignment (i.e. the capability of backtracking) itself,
the implementation only requires three row buffers (two for the non-affine case), each of which
has the size n + 1 where n is the number of characters in the query sequence. As shown in
section 5.2 on page 14, the buffer size has significant performance impact – therefore users of
CLSW should take care that the shorter sequence is always used as query sequence (as the
buffer size does not depend on the length of the target sequence).
In this report, we will show that it’s possible to replace a large buffer (which is frequently

accessed) by a target-sequence-size-dependent, less frequently accessed vector buffer and a
smaller buffer using the GIVE-SWAP algorithm (see section 5.7.5 on page 34). Although CLSW
does not currently use that algorithm, we expect this construct to exhibit significantly better
speed characteristics especially for longer query sequences.
Aspects of memory usage related to limitation of job execution time are discussed in sec-

tion 5.7.2 on page 31.

5.4.5. Instrumentation

Furthermore, CLSW contains detailed instrumentation code that measures the runtime of
different parts of the program. Although we used the Unix command time to measure the
overall runtime of the program in order to avoid biasing the results in comparison with other
software, this code prove to be valuable when estimating the overhead of subtasks like kernel
compilation, as discussed in section 5.7.1 on page 30.

5.4.6. Validation

In order to ensure CLSW computes their results correctly and therefore it is comparable to
existing tools, we developed a validation component that is tightly integrated into CLSW and
can be switched off using command-line flags.
This validator uses the SeqAn library (see [DWRR08]), which is a library of common bioin-

formatical tools provided by the University of Berlin. While SeqAn provides a multitude of
algorithms, Smith-Waterman is one of them. We assume a well-known library like SeqAn has
very few bugs and therefore provides correct results which we can use to validate CLSW. We
checked this assumption by manually comparing results for about 50 alignments with EMBOSS.
Assuming the command-line flags enable validation, each alignment score that has been

computed using OpenCL is subsequently recomputed using SeqAn. These reference scores are
then compared to the GPU-computed scores using a preconfigured difference threshold of 10−6
to account for floating point rounding errors.
Although the SeqAn reference computation takes about three to four orders of magnitude

longer than CLSW itself (our validation code has neither been parallelized nor otherwise
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optimized for performance), we ran the current version of CLSW with about 25 · 106 alignments
of different query and target sizes randomly selected from the SIMAP sequence dataset – none
of the validation passes failed.
By using this validation approach we found multiple critical bugs in our source code that

would have slipped through the debugging process otherwise, because they were related to
binary sequence serialization and only occurred for a subset of those sequences that contained
the special aminoacid code Z.
CLSW also implements OpenCL functions that compute and store the entire Smith-Waterman

matrix instead of computing the score for a two-dimensional space of alignments. These functions
can be used to debug differences in the resulting output to locate the areas inside the matrix
where the scores are different to the reference. We implemented scripts to visualize differences
in various forms, including as ASCII graphic or as grayscale image. Latter approach has been
used successfully to find aforementioned bug relating to the Z aminoacid code.
In previous versions of CLSW, we used our own implementations of Smith-Waterman and

Gotoh for validation. Even if we had fewer difficulties interconnecting the components using our
own software (for example it was difficult to use the heavily templated code from SeqAn to encode
and use the same substitution matrix read from the MATBLAS file), there were minor differences
in our understanding and interpretation of the algorithms and the implementation of other
tools like EMBOSS, leading to difficult-to-debug issues – for example, some implementations
assume that the gap open cost already includes one gap extension costs, while other sources
(e.g. [Hay09]) assume the cost of a one-size gap is gapopen + gapextend . Our implementation
is modeled after the EMBOSS interpretation, because we consider EMBOSS a source that is
more suitable as reference than Haynberg’s lecture notes, although the parallel GOBI lab course
explicitly had to use the Haynberg interpretation in their Gotoh implementations).

5.5. Benchmarks

5.5.1. Methodology

After successfully validating CLSW using the approach described in section 5.4.6 on the preceding
page, we benchmarked our application (using the length-aware kernel, see section 5.1 on page 11)
by comparing it to SSEARCH 3.6 (see [GML+10]) and SWIPE 2.0.9 (see [Rog11]) modified
by Mathias Walter (see https://github.com/tolot27/swipe) to support an output format
comparable to the other tools, both of which have been evaluated for the SIMAP project.

The SIMAP sequence dataset contains more than 70 million sequences – a full computation
would take several years, independently of how efficient the implementation is. As no other tool
we benchmarked supports sequence extensions, we needed to make sure the input sequences to
all tools have equivalent length while avoiding any bias that might be generated by

Therefore, we implemented a filtering tool we call “SIMAPTool” that reads a SIMAP-formatted
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sequences.gz and writes out a set of sequences to a FASTA file, filtered by length, with a list of
We used this approach to generate FASTA files containing at least thousand sequences

of different lengths and measured using the UNIX tool time how long the execution of the
whole program took, including all initialization passes. We did not use the instrumentation
implemented in CLSW (see section 5.4.5 on page 19), because the other tools we benchmarked
didn’t support detailed measurements and using only specific timings from CLSW would
artificially introduce bias to the benchmark.

In contrast to CLSW, both SSEARCH and SWIPE support computing the alignments itself.
We ensured that command line options to disable those calculations were active in both tools.
By comparing the program executing time with and without these options, we furthermore
ensured that the alignments are not only suppressed but not computed at all.
Special care needs to be taken in the IO parts of all given programs. As the program will

print n ·m scores for input sequence set sizes n and m, the output contributes significantly more
to the program execution than reading the input.
While IO is an integral part of the program execution time in practice, our intention was

to benchmark the core algorithm implementations. Therefore we redirected the both stdout
and stderr to /dev/null. While this approach does not remove IO performance issues directly
(because the IO is still a system call), it speeds it up significantly by avoiding to print the data
to a pseudoterminal or a file.
Because SWIPE supports multi-threading and enabling this option significantly increased

its runtime performance, we ran SWIPE both single-threaded (SWIPE) and multi-threaded
(SWIPE-MT ), where we ran it with any multithreading setting from 1 to 16 threads (inclusive)
and selected the best result.
Any benchmark was run four times with the same exact setting successively, discarding the

first value (in order to decrease bias introduced by uncached IO) and using the arithmetic
average of the remaining three as benchmark value.

Our benchmarks exclusively show runtime values, therefore lower is better for any benchmark
graph.

As we had only AMD graphics cards at our disposal and using the GPU nodes kindly provided
by the University of Vienna raised severe technical difficulties, we could not get CUDASW++ to
work in the limited lab timeframe. Although we have no comparable GPU benchmarks (also see
OCLSW in section 5.6.1 on page 27, which we also couldn’t benchmark for other reason), these
difficulties prove the most major issue of CUDA-based approaches: They are not as portable as
required.
The test platform – as described in section A on page 40 – is an approximately 3 year

old midrange desktop computer. Because in the years since it was manufactured the GPU
speed increased proportionally more than the CPU speed and a quad-core25 is considered not
25with Hyperthreading, virtual octocore
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ubiquitous for desktop computers even for today’s standard, our test method tends to favor
CPU-based approaches.
Although we were unable to benchmark on different graphics cards and/or CPU platforms

due to the severely limited lab time, we believe our results are – while not fully representative
for the potential of GPU platforms – significant and show some effects that can be predicted for
the specific platforms and software versions in use.

5.5.2. Kernel sizeclass benchmark
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Figure 3: Kernel sizeclasses

In figure 3 we benchmark kernel sizeclasses (and therefore check our assumptions about the
performance on the system described in section A on page 40) using the following methodology:

We selected a random set of 4,000 aminoacids with length 2000 from the SIMAP dataset. This
sequence set was subsequently used as input (as both query and target sequence) for CLSW. By
leveraging the buffer-size-templating mechanism discussed in 5.4.3 on page 18, we computed the
exact same set of 16 · 106 alignments on the same hardware, only varying the buffer size. Most
notably, the CLSW architecture ensures that the amount of computations (i.e. arithmetical
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operations) performed is exactly the same and invariant in respect to the buffer size.s
As it’s clearly visible in figure 3 on the preceding page, our assumptions made in section 5.2

on page 14, that larger buffer size are detrimental to the overall performance (and therefore
kernel sizeclasses are necessary) clearly applies.
Although we don’t know details about the memory architecture of the GPU in use, the

massive runtime increase at buffer size = 46 seems to fit the point where to compiler switches to
a slower memory area. A similar phenomenon occurs at buffer size = 96, seemingly indicating
that there are more than two classes of memories.
The rest of the graph generally shows a linear ascent. We assume this is caused by reduced

parallelism: If the compiler can’t fit buffers for all available cores into memory, it seems to
reduce the parallelism.

Besides the linear ascent, a repeating pattern of peaks is clearly visible, most notably including
two large peaks that seem to have approximately the same distance. Although we don’t know
the exact source of this phenomenon, we’ve seen similar results in [Fog14, Table 9.1], where
choosing a buffer size that is a integral multiple of the cache line size is massively detrimental
to performance.

These results can be leveraged by using the GIVE-SWAP algorithm introduced in section 5.7.5
on page 34.

5.5.3. Performance comparison benchmarks

Figure 4 on the next page shows the runtime of compute 1 · 106 Smith-Waterman alignment
of 1,000 × 1,000 sequences of query and target sequences of 1,000 aminoacids length is shown,
comparing the tools listed in section 5.5.1 on page 20.

As it can be clearly seen, CLSW is significantly slower that the other tools used. Multithreaded
SWIPE is the fastest of all compared tools and almost ten times as fast as CLSW.

In order to discuss possible causes for the bad performance shown in figure 4 on the next page,
we need to compare it with figure 5 on page 25. Said figure uses the same set of length-1,000
aminoacid sequences, but uses length-20 query sequences. The absolute runtime of computing
1 · 106 alignments of length-20-query to length-1,000-target sequences, however, would be less
that ten seconds and therefore over-emphasize the IO and initialization overhead in all compared
tools. Therefore we used 4,000 query sequences, therefore computing overall 4 · 106 alignment
scores.

In contrast to figure 4 on the next page, CLSW exhibits better performance than any of the
other tools in figure 5 on page 25 – it’s about 2x faster than multithreaded SWIPE.
Although there is a multitude of potential causes for this effect and we expect it to be

highly-device-dependent, our results in section 5.5.2 on the previous page show that memory
usage is a critical performance factor in our test environment. As the buffer size solely depends
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Figure 4: Benchmarks of SSEARCH36, SWIPE, SWIPE-MT (multithreaded SWIPE) and
CLSW performing a 1,000 × 1,000 sequences all-against-all alignment of query and target
sequences that are 1,000 aa long.

on the query size (and, most notably, not on the target sequence size), figure 4 requires three
buffers26 of size 1,001 whereas figure 5 on the next page requires three buffers of size 21.
Figure 3 on page 22, as discussed in section 5.5.2 on page 22, clearly shows that buffer sizes

of ≥ 50 have a massive on the program runtime.
However, it’s also evident that currently using multithreaded SWIPE is faster than using

CLSW for the majority of the SIMAP alignments.
As CLSW has been developed in less than two weeks, it was impossible to implement all

optimization approaches discussed in section 5.7 on page 30. Approaches like SIMD vectorization
(see section 5.7.7 on page 39) can however provide a significant speedup. We expect that,
by optimizing CLSW using these optimization methods, it will reach at least comparable
performance to comparable tools, without loosing any of its inherent advantages as discussed
in 5.6 on page 27.
Furthermore, with GIVE-SWAP in section 5.7.5 on page 34 we introduce an algorithm to

26using the affine kernel
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Figure 5: Benchmarks of SSEARCH36, SWIPE, SWIPE-MT (multithreaded SWIPE) and
CLSW performing a 1,000 × 4,000 × 1,000 sequences all-against-all alignment of query sequences
that are 20 aa long with target sequences that are 1,000 aa long.

leverage the high speed characteristics of CLSW for small query sequences for sequences of
arbitrary size.

5.5.4. Affine vs. non-affine gap costs

As discussed in section 5.4 on page 17, CLSW implements optimized algorithms for both affine
and non-affine gap costs Although we did not explore the factors involved in this in detail, we
assume that both the increased usage of memory (leading to a higher probability of the buffers
being placed into slower memory, as discussed in section 5.7.6 on page 35 and section 5.2 on
page 14) and the computational overhead of computing three matrices instead of one leads to
the worse performance of the affine kernel.
Because of the results discussed in section 5.5.2 on page 22, we furthermore assume the

increased memory usage (even though it only increases by about 1
3) accounts for the majority of

the runtime performance detriments.
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Figure 6: Benchmark of affine vs. non-affine gap cost implementation

In figure 6 a comparison of the runtime of both implementations is shown, being used with the
same parameters and sequence sets as figure 4 on page 24 is shown. All other tests we conducted
show nearly identical results, with smaller overall runtimes showing significantly less absolute
performance advantage of the non-affine implementation. By using the instrumentation discussed
in section 5.4.5 on page 19, we were able to attribute about 80% of the difference between
long-duration and short-duration tasks to kernel initialization – we assume the remaining 20%
are caused by initialization and cleanup overhead that can’t be measured individually.
Although these results might significantly depend on various parameters, our results show

a speedup of 2 to 3 when using the non-affine approach. For practical use, however, we think
the higher resemblance of affine gap costs with the biological reality significantly outweighs the
performance increase. Should any application require only non-affine gap costs for any reason,
these results show that it is possible to gain significant performance advantage by removing any
affine-specific code.
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5.6. Advantages over existing solutions

5.6.1. Comparison to OCLSW

Another OpenCL Smith-Waterman implementation, namely OCLSW, is introduced in [RMG+10].
The approach of the authors generally follows the intra-alignment parallelism approach as
outlined in 5 on page 9, but implement advanced mechanisms to precompute parts of the matrix
in parallel for si
Although a performance comparison would be interesting, we found a multitude of complex

bugs in the implementation that led to the conclusion that the authors did not develop their
application to a generally usable state.
One example for a critical bug in the implementation is the code line

char * const g_stAminoAcids = "ATCG"; //"ARNDCEQGHILKMFPSTWYVBZX";

Obviously, the authors only tested the publicly released version with DNA sequences – trying
to use aminoacid sequences as input for OCLSW led to an immediate program crash with the
message that M is not an aminoacid

After resolving three critical bugs without success, we abandoned all attempts to get OCLSW
to work properly.
As our primary goal was to develop a GPU-based Smith-Waterman application for SIMAP,

we can’t see OCLSW as viable alternative to other applications: It is severely bugged to a point
where it’s utterly useless for the SIMAP usecase and there is no indication the authors continue
developing and maintaining it.
We suspect the authors only developed OCLSW as a proof of concept application to prove

their theses for their paper. Even if CLSW is – in its current state – also a proof-of-concept-
only implementation and one might raise similar criticism about CLSW for other usecases,
we deem CLSW as significantly more stable and maintainable (partly because of its simpler
inter-alignment parallelism approach) at least for the SIMAP usecase.

5.6.2. Platform-agnosticism

In contrast to other GPU-based solutions like CUDASW++ (see [LMS09,LSM10,HCO+11]),
CLSW not only runs on NVidia-based platforms (CUDA is proprietary NVidia technology that
does not run on hardware made by other vendors), but also on AMD GPUs and other highly
parallel accelerators like Intel Xeon Phi (see e.g. [CSKM12]).

Assuming appropriate ICDs exist, CLSW also runs any type of CPU and even FPGA devices
(see section 3.1 on page 7 for a detailed discussion). Therefore it is truly platform-agnostic,
without requiring any change of the source code, although specific platform might require specific
optimizations and the parallel programming model might also be suited better for platforms
with higher hardware parallelism than for classical general-purpose platforms like CPUs.
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Besides being a CPU-only solution, SWIPE is specific to CPUs supporting the SSE2 (and
optionally SSSE3) instruction set extensions. While all modern x86_64 CPUs support those
instruction set extensions, SWIPE can neither leverage the full power of wider SIMD instructions
(e.g. AVX) in recent CPUs (see section 5.7.7 on page 39 for a detailed description) nor run on
any non-x86_64 CPU, even if alternative architectures like ARM are getting more and more
relevant – SIMAP even recently released a BOINC client that runs on Android smartphones,
the vast majority of which are ARM-based.

5.6.3. Compact codebase

While comparable solutions like SWIPE have a large (almost 10,000 SLOC27 codebase CLSW
achieves comparable or better results (see section 5.5 on page 20) with less that 1,000 overall
lines (including validation code), while the core OpenCL Smith-Waterman implementation
consists of less that 50 SLOC.
SWIPE requires complex SSE-specific inline assembler code which is complex and hardly

documented, therefore increasing the probability of rarely occurring bugs (for example, the
authors of SIMAP recently discovered a bug relating to alignment scores > 232 − 1) and
dramatically decreasing the maintainability of the software. It’s almost impossible to port
SWIPE to another platform, as even small architectural changes require rewrites of large amount
of complex core code.

5.6.4. Floating-point computation

Existing tools for both CPU and CPU platforms (most notably SWIPE and CUDASW++)
exclusively use integral computations for both the substitution and the Smith-Waterman matrix
itself. While for many cases this method is sufficient, we believe that (although it has proven
difficult to find hard evidence for this theory) this has mainly historic reasons:

When substitution matrices and their underlying statistical theorems were discovered, floating
point computation was still a difficult task for computers. While the CPU itself can run fast
integer computations, floating point computations could only be handled by specialized FPU28

ICs like the x87 family. Later, these ICs were integrated into the main processor, but floating
point computations were still significantly slower than integer operations.

Based on this phenomenon, computational biologists started to truncate29 the logarithms in
the substitution matrices to be able to compute using fast integer operations exclusively.

While there is a scaling factor λ−1 applied (see [YA05]) before the truncation and this factor
could lead to the same results as using true floating-point computation if chosen appropriately

27Source lines of code, does not include empty lines and lines only containing comments or brackets
28Floating point unit
29Rounding is also an option, but expresses the same issues
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large30, during our research regarding this topic we have not found a single substitution matrix
that uses large numbers – most notably, the MATBLAS matrices published by the NCBI rarely
exceed single-digit numbers.
We believe that further research is required to determine how large the effect is
In contrast to the aforementioned other implementations, CLSW uses single-precision (32-bit)

floating point numbers exclusively. Not only can floating point numbers be excepted to be
as fast as integers on modern platforms, there is even the possibility of GPUs being faster in
the floating point domain because the majority of the 3D computation requires floating-point
accuracy.

By using floating points, the results when using integral substitution matrices are equivalent
to using existing methods – however, if using more accurate input, one can leverage that
characteristic without changing CLSW itself to improve the output score accuracy.

Composition-based score adjustment While one application of floating-point-capable algo-
rithms is to use more accurate substitution matrices as parameter, a significant amount of
research has been performed on Composition-based score adjustment (see [AWG+05,YA05]).

The method is based on the observation that using one substitution matrix for all sequences
assumes a random protein model, “in which the aminoacids occur independently with background
probabilities −→p ” ( [YA05, p. 1]). Composition based score adjustment resolves this problem by
modifying −→p according to the protein sequence. As −→p , i.e. the aminoacid propensity which
significantly depends on the propensity of secondary structures like β-sheets or α-helices).
Although a detailed discussion would break the boundaries of this report and we therefore

refer to [AWG+05, YA05] for the construction algorithm, we observe that in [AWG+05, p.
6] Stephen Altschul (which we consider to be of significant importance for the mathematics
underlying substitution matrices – most notably Karlin-Altschul-statistics) et al. use a floating-
point-based BLOSUM62 as base for the adjustment. Although [AWG+05] does not clearly
indicate why they’re not using integral truncated matrices (notably, Altschul works for the
NCBI who publishes said truncated matrices), we assume that him using a floating-point
matrix is supportive of our theory in section 5.6.4 on the previous page where we assume that
floating-point matrices yield more accurate results.
For composition-based adjusted substitution matrices however, we assume that the changes

to the original matrix will be so small that truncation will in most cases truncate away the
information gained by composition-based score adjustment. Therefore we assume that floating-
point accuracy is an absolute requirement for composition-based score adjustment.
The authors of SIMAP intend to integrate composition based score adjustment into new

versions of their application – for the Smith-Waterman algorithm (in contrast to using FASTA

30The gap penalties require adjustment accordingly
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or BLAST ) doing that is only possible using CLSW, because other applications like SWIPE or
CUDASW++ do not support the required floating-point accuracy for the adjustment

PSSM-based scoring Although we did not explore this in detail, we believe the even more
general approach of sequence-specific and position-specific substitution matrices outlined in [AH11]
could result in even more accurate scores than composition-based-adjusted substitution matrices
and it would be possible to integrate this approach into CLSW.

5.6.5. Performance advantages for short queries

As discussed in section 5.5 on page 20, CLSW has a significant advantage in performance for
short query sequences. By using the GIVE-SWAP algorithm introduced in section 5.7.5 on
page 34, we expect that this advantage can be expanded to arbitrarily-long query sequences.

However, there are usecases where very short aminoacid sequences need to be aligned to larger
sequences: While there has been significant progress in Next-Generation genomic sequencing
(CLSW is generally capable of DNA/RNA alignments, however some optimization might be
necessary to achieve competitive speeds), progress has also been made in shotgun protein
sequencing allowing high-throughput aminoacid sequencing (see [BCP07,MY02]). The high
performance of CLSW even for larger target sequences – as long as short fragments are used as
queries – seems to perfectly fit the task of reassembly, possibly allowing to use optimal alignment
scores instead of heuristic approaches, increasing the overall accuracy.

5.7. Methods for further optimization

In this section we will introduce several methods that have not been implemented in CLSW
so far, but could have a high chance of increasing its overall performance. because we can not
possibly include all optimization methods, we focused on algorithms that can be implemented
with realistic effort without negatively affecting any of the advantages discussed in section 5.6
on page 27

5.7.1. Reduce kernel compilation overhead

In the current version of CLSW, any time the executable is run on a sequence dataset, the
OpenCL sourcecode is compiled by the OpenCL ICD.

This ensures maximum compatibility and reduces the complexity of the CLSW source code –
however the optimization performed by the OpenCL compiler introduces a significant amount
of overhead. While for the tested GPUs the kernel compilation reproducibly took between
1-2 seconds (depending on the driver version and GPU hardware), FPGA-based devices are
expected to be significantly slower. In order to explain this phenomenon, we first need to review
FPGA-based computational hardware design.
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There are two general ways to compile OpenCL kernels for reconfigurable FPGAs:

1. Use a highly-parallel softcore on the FPGA that is independent of the OpenCL kernel
executed, and run OpenCL as software on it

2. Synthesize31 a separate FPGA bitstream32 for each33 kernel

While option (1) also works for one-time-programmable FPGA, the FPGA fabric is used to
mimic a GPU-like architecture – although it may be specialized for a class of computational
tasks, most of the FPGA fabric space is wasted for logic required for instruction interpretation
and synchronization.
Option (2) uses the full potential of the FPGA fabric capable of logic-level optimizations.

However, the process of building a FPGA bitstream – mainly consisting of Synthesis and
Place&Route – is NP-complete34 (see [GJS74]). In reality – even though commercially-available
tools have been optimized significantly – it takes several minutes to compile programs equivalent
to less than 10 lines of CPU code. Compiling larger programs – like those required for highly-
parallel OpenCL computation – is expected to take multiple hours to days.
OpenCL provides a facility to retrieve the compiled binary program from the ICD. A possible

optimization of CLSW would involve retrieving the binary, saving said binary and re-using it if
an appropriate binary is available. However, the developer would have to take special care that
no incompatible kernels35 are used in order to avoid errors.

This optimization would therefore reduce overhead for CPU and GPU computations, while it
is absolutely essential for FPGA-based devices, assuming option (2) is chosen by the vendor. In
the context of the benchmarks outlined in section 5.5 on page 20, the speedup for short query
sequences could be increased further from 3.0× (CLSW ↔ single-threaded SWIPE) to 3.4×36

5.7.2. Compute multiple sequence sets in one program run

The current CLSW implementation reads two sequence sets Sa and Sb and computes alignment
scores for any sequence tuple (sa, sb) where sa ∈ Sa ∧ sb ∈ Sb. For efficiency reasons, CLSW
allocates a chunk of memory for both Sa and Sb. Because these sequences are extended to a
sizeclass with a size equivalent to the maximum sequence length of the respective sequence set,

31Synthetization is the process of turning an abstract algorithm implementation into a boolean-logic-level
construct that can be programmed into an FPGA

32A bitstream is the logic-level configuration of the FPGA fabric and connected peripherals and therefore roughly
equivalent to a software on GPUs or CPUs

33While it seems logically possible to compile a whole set of kernels into a bitstream, analysis of this possibility
is outside the scope of this report

34While synthesis is only considered NP-hard, because of the NP-completeness of Place&Route the whole process
needs to be considered NP-complete

35for example, if the user changed his graphics card or driver version
36Assuming a normally distributed kernel compilation duration with µ = 1.7
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therefore yielding a O(n+m) space complexity, with n and m being the sizeclass lengths of Sa

and Sb.
However, as the OpenCL kernel needs to store a 32-bit floating point score for any sequence

pair, the space complexity of the output needs to be added to the space occupied by the sequence
arrays: O(|Sa| · |Sb|).
Especially for desktop computers it’s not possible to use all of the memory the graphics

card has available37, because both the management part of OpenCL and – in case of desktop
systems – the whole graphics system, including display buffers, require large amounts of DRAM
themselves.
In our tests with desktop systems, we discovered that using more than 50% of the graphics

card DRAM (with 512/1024 MB DRAM on AMD cards) increased the probability of system
crashes and freezes significantly during computation, while the system seemed perfectly stable
with less DRAM being used.

Therefore, it’s necessary to limit |Sa| · |Sb| to be able to reserve no more than 40% of the
available graphics card DRAM38. This consideration is specially important in a distributed
computing environment where different generations of high-end and low-end graphics cards need
to be supported.
Assuming a minimum of 256 MB for supported graphics cards, we need to ensure that
|S|2 ≤ 0.4 ·256 ·106 ⇒ |S| ≤

√
0.4 · 256 · 106 ∼= 10119 where we assume without loss of generality

that |S| := |Sa| = |Sb|.
Another important consideration is that BOINC users might expect their desktops not to

freeze during computation. Although the exact freezing mechanics seems to depend on the
driver and graphics card in use, based on previous experiences we know that freezing can only
be eliminated when not using one large minute-duration job, but thousands of smaller jobs.
Although an analysis of the exact cause of this phenomenon is outside the scope of this report,
we attribute it to the missing capability of GPU drivers (or even GPUs itself) to preempt
running jobs, together with the incapability of running several jobs in parallel (although the
workspace inside one task is computed in parallel). Therefore, the scheduler needs small tasks
in order to interleave both display rendering and the GPGPU task.

While this is not relevant for servers and unused desktop devices, that is not an assumption
we can generally make when building a system that is capable of being used as a distributed
computing GPU application. Therefore we conclude that for server-only installations the DRAM
is the limiting factor, while for applications where freeze prevention is required, a job duration
limit several orders of magnitude lower needs to be imposed upon the CLSW job splitter.
Even though both the memory limitation and the freeze prevention methodology seem to

37This is no different in CPU-only platforms: A server with e.g. 32 GB of DRAM can’t run an application using
32 GB of RAM without using techniques like swapping

38Determining more accurate numbers require testing on a multitude of platforms, which we don’t had to our
disposal during this project
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indicate smaller jobs are always better, one also needs to take into account the overhead
introduced by starting more than one job. Not only will multiple jobs result into non-continuous
computation (which is desirable to some extent in order to prevent freezes), but also in increased
overhead to setup the jobs on the device.
In the current state of the application, it’s impossible to compute large sets of alignment

without calling CLSW multiple times, because it would fail trying to allocate a too large amount
of DRAM. Therefore, it’s not only necessary to implement a job splitter in the application
itself for performance and compatibility reasons39, but also to be able to run it standalone with
longer-duration BOINC jobs40.

5.7.3. DMA-based overhead reduction

Especially in the context of small jobs required for freeze prevention and memory limits, it is
important to reduce the overhead induced by data transfers from and to the device. While
transferring the sequence arrays to the device can introduce a non-negligible amount of latency
in the overall process, we have shown that the resulting score array asymptotically occupies
quadratic space (see 5.7.2 on page 31) while the sequence arrays only occupy linear space in
respect to the number of sequences in both sequence sets.
As shown in figure 7 on the next page, we can use a technology known as DMA to transfer

data to and from the device while a computation is in progress. Most modern computational
hardware, including CPUs and GPUs include a DMA controller that enables applications41.
DMA requires device support for mapping device memory into the CPU’s virtual address space,
however there are no modern graphics cards that do not support memory mapping because of
increasing performance demands even for simple desktop applications and other compatibility
reasons.

While DMA might still stall the computation for a small period of time because of arbiting42

conflicts, it can still be expected to be faster than interleaved transfer/computation scheduling
as outlined in figure 7 on the following page.
Currently, CLSW uses DMA-based host-to-device-transfers (i.e. sequence array transfers),

but (mainly because of lacking support for the optimization outlined in section 5.7.2 on page 31)
it doesn’t support data transfer concurrent to the computation.

39For example, CLSW could adaptively adjust the job size based on several BOINC-supplied parameters
40While shorter BOINC jobs loose fewer computation results in case of failure, it’s preferable to use at least

10-minute jobs in order to reduce the massive server load incurred by requesting, transmitting and checking
second-duration jobs

41On most operating systems, only the kernel uses DMA directly, e.g. to transfer Ethernet packets from the
RAM to an Ethernet card’s internal buffer

42Arbiter: Logic that controls and serializes memory accesses
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Figure 7: DMA-based transfer concept

5.7.4. Sequence array reuse

Should host-to-device-transfers of sequence arrays proof to be a significant bottleneck, it’s
possible to re-use either the query sequence or the target array by intelligently scheduling the
job order so that e.g. one set of query sequence can be aligned with multiple target sequence
arrays without the need to re-upload the query sequence array.

While this might be relevant in conjunction with small job sizes outlined in 5.7.2 on page 31
because of the requirement for internal splitting into sub-jobs, we expect that this method won’t
provide any noticeable performance increase because

5.7.5. The GIVE-SWAP subdivision algorithm

In section 5.5 on page 20 we observed that CLSW is faster for very short query sequences.
In this section, we will present the GIVE-SWAP43 algorithm that allows us to leverage

this phenomenon to increase processing speed for larger query sequences. GIVE-SWAP is an
extension to Smith-Waterman that allows us to partially calculate a slice of the matrix, using a
numeric vector as intermediate state representation. While it could also be applied to target
sequences, Smith-Waterman is inherently invariant to sequence swapping – therefore creating
an isomorphism between both calculations.
For our example, we’ll use a 5 × 5 Smith-Waterman matrix. If we would compute the

matrix using the unmodified Smith-Waterman algorithm using inter-task parallelism (therefore
computing one row before the next, storing only the current and the previous row), we would
need to allocate two row buffers that can store at least 5 bytes44.

By using GIVE-SWAP, we can reduce that to 2 bytes45. In order to comprehend the underlying

43Generalized initialization vector extensions to Smith-Waterman alignment problems
44For performance reasons, 6 bytes need to be stored in the buffer, including the leading zero to allow branch-free

direct array indexing
45Any subdivision is possible, down to a row buffer size of 2, independent of the query sequence size
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concept46, we first introduce the column vector −→IV 47 where −→IV ∈ Rn where n is the number of
characters in the target sequence.
For a given (sub)matrix that is calculated atomically, we define −→IV as the column that is

directly left of the first column to be computed. This column is not assigned to any query
sequence character48. Therefore, the classical Smith-Waterman algorithm always uses −→IV := 0,
while unmodified Needleman-Wunsch without affine gap costs uses −→IV := [0·G, 1·G, 2·G, 3·G, ...]
where G is the configured gap penalty. The initialization vector is – together with the first row
which can be computed trivially assuming one knows the absolute Cartesian coordinates in the
matrix49 – sufficient for computing any remaining cells because each cell depends only on the
cell left, above and above-left of the cell to be computed. The cells left and above-left of said
cell to be computed are either normal cells or elements of either −→IV or the first row vector.

Furthermore, we observe that by extending the query sequence, the matrix is only extended
horizontally by adding new columns. This new sub-matrix can however be calculated by knowing
only the values of the last column vector of the already calculated sub-matrix. Said column
vector is however the column vector directly left to the first column to be computed in the new
sub-matrix – therefore it is −→IV in respect to said new sub-matrix.
Based on these observations, we conclude that we can extend the query sequence of any

Smith-Waterman-Problem while knowing only the last computed column vector.
Given this knowledge, we can easily use it to subdivide an existing query sequence by

considering the first n characters of said query sequence and extending appropriately to compute
the rest of the matrix. Between extensions, only −→IV for the next computation, being equivalent
to the last computed column vector, needs to be stored in-memory. As the memory area storing
−→
IV is only accessed O(n) times, there is less performance impact if this memory is slow and we
expect an implementation using GIVE-SWAP to be faster regardless of the target sequence size.
In figure 8 on the following page a basic example is shown - the subdivision occurs at the

column boundary marked in red, i.e. after two query sequence characters. The column marked
in blue represents −→IV for the sub-matrix after the subdivision.

5.7.6. Memory access optimization (TESSIN)

As we observed in section 5.5 on page 20, memory speed is a critical factor in optimizing CLSW.
A discussion of GPU-memory access optimization in relation to alignment algorithms can

46Without loss of generality, we explain GIVE-SWAP only in the non-affine-gap cost domain By using a vector
of tuples instead of a scalar vector for −→IV , this can be generalized

47We use the notation −→IV to express the vector character of IV , without expressing any further meaning about
IV , as in [YA05]

48As aforementioned, we assume without loss of generality that query sequence characters are always assigned
to columns while target sequence characters are always assigned to rows

49In the special case of Smith-Waterman it is set to zero, therefore knowledge of the Cartesian coordinates is
not required
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Figure 8: GIVE-SWAP subdivision example

be found in [ZMA+12]. While the assumptions they make for their particular algorithm only
partially apply to the concepts in use by CLSW, their basic idea can be re-used to create a
more efficient memory layout.
In this section, we will present TESSIN 50, an algorithm that allows us to store a set of

sequences with equivalent length51

Although a detailed discussion would break the boundaries of this report, we will present a
generalization of in [ZMA+12] that in a special case theoretically provides better performance
than both the linear sequence array storage currently in use by CLSW.
In order to explain our method, we require some definitions: Let S be the sequence set we

intend to store efficiently. Let sn the nth sequence in said sequence set. Furthermore, let si,j be
the jth character in the ith sequence in S, with si,n−m denoting the nth to mth character inside
si. In our examples, we will use 1-based indices exclusively.

Standard layout s1 s2 s3 s4

Memory address

Zhang et al. s1,1−4 s2,1−4 s3,1−4 s4,1−4 s3,5−8 s2,5−8 s3,5−8 s4,5−8

TESSIN layout s1,1 s2,1 s3,1 s4,1 s1,2 s2,2 s3,2 s4,2 s1,3 s2,3 s3,3 s4,3 · · ·

Figure 9: Memory layouts in comparison with TESSIN

In the standard linear memory layout, any sequence is stored in an non-fragmented manner,
50Transposed Equi-length Storage of Sequence INformation
51Shorter sequences can be extended up to the desired length using the method introduced in section 5.1 on

page 11
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whereas both Zhang et al. and TESSIN store sequences in multiple fragments.
In order to explain why sequence fragmentation can – depending on the memory access

pattern and device in use – improve computational speed, we need to have a look into the
internals of caching on modern devices:

If a task requires a single byte of memory from the system’s RAM – assuming said byte is not
yet in the cache – the memory controller will load at least52 an entire cache line from memory.
This pattern not only limits cache management overhead but also ensures the high hardware
parallelism of modern DRAM ICs is fully leveraged.
Although the cache line size depends on the device in use and varies by several orders of

magnitudes, one can generally assume that at least 32 consecutive bytes are loaded for each
memory fetch on both CPUs and GPUs. While the OpenCL optimizer is able to improve many
performance-relevant parts of the program, memory access optimization can usually not be
optimized automatically, because the compiler often does not have sufficient information on the
exact memory access pattern and most ICDs can’t re-order memory on the fly while uploading
to the device53

Because of the inter-task parallelism used in CLSW and its deterministic cell computation
order, it can easily be proven that while the target sequence character only changes after
finishing to compute an entire row, the query sequence character required for the substitution
computation changes for every cell.

Therefore, it’s evident that optimizing cache hit rates for query sequence character access will
improve overall program performance.

[ZMA+12] subdivide sequences into 4-character-long fragments and store the nth fragment
for any sequence in S consecutively. Therefore, a cache line might contain the nth to n+ 3th
character of multiple sequences. The layout stores multiple lines of fragments where a line is a
single fragment for each sequence in S stored consecutively (see [ZMA+12, Fig. 2]).

If the memory access pattern matches this assumption, the number of cache hits are maximized.
Zhang et al’s method seems to be optimized for a SIMD-like approach where 4 cells are computed
at a time. Obviously, storing fewer characters for each sequence in a cache line means that
character for proportionally more sequences can be stored in said cache line.

In the case of CLSW, only one character is required at a time. Though the exact task executing
order is neither deterministic nor controllable, we assume that caching the nth character of
consecutive sequences will improve the overall executing speed, even if not all fetches will yield
cache hits. Especially for long sequences55, there will be virtually no cache hits, especially if the
cache is not large enough to store an entire line for any sequence.

However, the method introduced in [ZMA+12] can be generalized to load not exactly 4 but m
52On CPUs with virtual memory support, the kernel mostly loads entire pages, but in faster caches like L1 there

is limited space so the page is only partially loaded into these caches
53With DMA, this task is even harder as COTS54 DMA controllers can’t do any processing at all
55with a length greater than the cache line size
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characters for each sequence at a time. Using powers of 2 for m improves the performance by
avoiding division-like56.
For the general case, calculating the memory offset (relative to the start of the sequence

memory region) yields (with |S| denoting the number of sequences in S):

si,j = |S| ·m · b j
m
c+m · i+ (j mod m)

In this computation the computationally expensive instructions are the division in b j
m
c

(see [Fog14]), the modulus in (j mod m). By using powers of 2, the division and Gauß bracket
application can be reduced to a bit shift while the modulus application can be reduced to XOR
by using ⊕(n+ 1).

While standard linear sequence storage is a space case of this generalized storage layout (with
m being equal to the sequence length), TESSIN uses m := 1. This reduces the aforementioned
formula to si,j = |S| · j + i. Even when used with a SIMD-enabled application as shown in
section 5.7.7 on the next page, we expect the easier address calculation consisting of only a
multiplication with a constant and an offset-addition is overall faster57 because complex address
computations for each cells are avoided.
TESSIN (see figure 9 on page 36 for a visual comparison with [ZMA+12] and the linear

layout) can also be seen as a simple transposed storage layout: A single sequence si can be seen
not only as a string, but also as a vector58 of characters:

si =
(
si,1 si,2 · · · si,n

)
However, we can also see this as matrix (with one of the dimensions being 1) and transpose it:

(si)> =


si,1

si,2

· · ·
si,n


If we consider (si)> as a column vector of a matrix and successively add any other sequence

column vector from S, we’ll get a sequence set matrix, for example with |S| = 3 and a sequence
length of 3:

S> =


s1,1 s2,1 s3,1

s1,2 s2,2 s3,2

s1,3 s2,3 s3,3


56Division-like: Modulus or divisions, many architectures generally compute both at once
57This operation is supported as indirect addressing by most hardware
58Although vectors are often noted as columns, i.e. vertically, we note si as horizontal/row vector because of its

horizontal notation as a string
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Storing S> in row-major order directly yields the TESSIN representation.
Although CLSW currently does not currently implement TESSIN, we expect it to improve

performance by a factor of between two to ten, being highly dependent on device and ICD
characteristics like cache size.

5.7.7. SIMD-Vectorization

While CLSW gains most of its performance from the high inter-task parallelism, alternatives
like SWIPE use SIMD59 instructions to speedup their computation.

SIMD hardware – including any modern CPU and GPU – allows the programmer to execute
the same instruction not on a single scalar but on a vector of scalars with a defined size.
For example, the SSE60 of the x86 platform allows computations (mainly simple arithmetic

operations like addition, multiplication or division) to four 32-bit floating point numbers
instead of one, while not taking more time than a single computation61. Newer instruction set
extensions like AVX62 in x86_64 processors offer an even-wider parallelism of for example eight
32-bit-floating point numbers, although neither SWIPE nor comparable tools support them.

GPUs usually compute large-scale 3D environments and apply visual effects to them – in
order to do this efficiently, they not only require a large number of parallel computation units
but also SIMD parallelism in order to compute 3D coordinates (which are represented by 4× 4
matrices) efficiently.
OpenCL supports using 4-dimensional vectors of floats instead of single floats currently in

use by CLSW. While it would be possible to combine GPU-core inter-task parallelism with
SIMD intra-task parallelism, it seems to be significantly easier and less overhead-prone to simply
compute 4 Smith-Waterman alignment scores in parallel on a single GPU core.
In order to efficiently do this, we require not only basic arithmetics on vectors but also a

vector max operation, being defined as:

max(


a1

b1

c1

d1

 ,

a2

b2

c2

d2

) :=


max(a1, a2)
max(b1, b2)
max(c1, c2)
max(d1, d2)


In OpenCL, support for this operation is already present, however as it is not generally

important for efficient 3D calculation, some OpenCL devices might calculated the resulting
vector serially.

59Single instruction – multiple data
60Streaming SIMD Extension
61It should be noted that this performance gain comes with a significant number of problems, including overhead

for transfer to/from the SSE registers and using 32 or 64 bit floating-point precising instead of 80-bit precising
as in use by the x87 FPU integrated in any x86 processor

62Advanced Vector Extensions
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While implementation of this feature in CLSW was not possible, we consider SIMD optimiza-
tion a method that easily allows the programmer to achieve three-to-four-fold speedup.

6. Conclusion & Outlook
In this report we introduced CLSW, a fast GPU-based Smith-Waterman score-only-alignment
calculator. While generally applicable for any protein alignment problem, it was designed
specifically as a proof-of-concept application for SIMAP.
Even if we had only two weeks to develop a fully functional, validated and optimized

implementation and all related concepts, our results show that in some special cases CLSW is
significantly faster, generally more portable and overall simpler than competing solutions like
SWIPE.

By using OpenCL as a backend computation framework, CLSW is not only GPU-vendor-
agnostic, but achieves true platform agnosticism by running on an ever-increasing multitude of
computational hardware, without requiring any modification.
Three new algorithms were introduced that can be used to optimize CLSW even further,

especially in those cases where competing solutions are currently faster:

• QUANTMASS, an adaptive heuristic metric to efficiently compute kernel- and sizeclass
boundaries

• GIVE-SWAP, an extension to the score-only Smith-Waterman algorithm that allows
imposing arbitrary limits on computation buffer sizes while still only using linear memory

• TESSIN, a memory layout scheme for generalized sequence storage that takes advantage
of cache-line characteristics to improve cache hit rates for inter-task Smith-Waterman
parallelization

By implementing these optimizations, we believe that CLSW could prove advantageous not
only to SIMAP, but to many projects that today can only use heuristic approaches to alignment
scoring. CLSW could be used to improve the data quality of those databases, using only
off-the-shelf hardware instead of requiring expensive and specialized accelerators.

A. Test platform
All tests were conduct on an Acer Aspire M5811, equipped with a Samsung Series 830 128 GiB
SATA 3 SSD in order to decrease the biasing effects of IO performance on programs.
The test computer contains 6 GiB of Non-ECC DDR3 RAM, clocked with 1333 MHz and

uses a Core i7 860 CPU, clocked at 2.80 GHz.
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As graphics card for GPGPU applications we used a Cypress PRO Radeon HD 580 AMD
card, clocked at 725 MHz, with the 1 GiB GDDR5 memory clocked at 1,000 MHz. Although
we could have overclocked the GPU to improve our results, we intended to benchmarks with
minimized bias. Furthermore, we have the experience that overclocking often leads to tasks
failing or providing incorrect results.

As software backend, we used Ubuntu 13.10 with a 3.13.0 vanilla kernel optimized for Core2+
x86_64 with default settings and AMD CPU microcode removed . We used both g++ 4.8.1 from
the distribution package sources and clang++ 3.4 FINAL vanilla as compiler for the CLSW
C++ code (with negligible runtime differences). As graphics card driver, we used vanilla AMD
catalyst 12.9 and AMD APP SDK version 2.9 as OpenCL provider.
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