Phylogenomic inference Hauptseminar Frishman WS2013/2014

Uli Köhler

February 3rd 2014

Structure of this talk

- Issues of non-phylogenic functional prediction
- What is phylogenomic inference?
- Phylogenetic tree reconciliation
- Phylogenomic inference methodology
- Phylogenomic databases and algorithms:
 - SIFTER
 - PhyloFacts
- Common problems of phylogenomic predictions
- Future of phylogenomics
- Seminar conclusion

Non-phylogenomic function prediction

- High-throughput sequencing
 - → Many proteins, few information available:
 - $\sim\!90000$ PDB structures vs 5.1×10^6 UniProt/TrEMBL sequences
- Alignment score does not distinguish between matching domains
- Difficult to separate orthologs and paralogs

What is phylogenomic inference? I

Evolutionary relationship (phylogenetics)

What is phylogenomic inference? II

- Concept to enhance homology-based function predictions
- Can be applied to both genes and proteins
- Attempt to separate orthologs and paralogs
 → ortholog = high probability of similar or identical function
- Phylogenetic tree reconciliation:
 Identify speciation and duplication events in phylogenetic trees

Tree reconciliation

Tree reconciliation

Tree reconciliation

Phylogenomic inference methodology I

- 1. Cluster homolog proteins
- 2. Compute multiple alignment
- 3. Edit alignment (remove potential non-homologs)
- 4. Mask less-conserved regions in alignment
- 5. Construct phylogenetic tree
- 6. Identify closely related subtrees
- 7. Overlay with experimental data
- 8. Differentiate orthologs and paralogs (Tree reconciliation)
- 9. Infer function from orthologs

Phylogenomic inference methodology II

- 1. Cluster homolog proteins
- 2. Compute multiple alignment
- 3. Edit alignment
- 4. Mask less-conserved regions in alignment
 - Raw alignments would introduce noise
 - Retain only high-scoring homology & highly-conserved domains

Phylogenomic inference methodology III

- 5. Construct phylogenetic tree
 - Core problems:
 - No information about actual ancestors is available
 - High computational complexity (optimal solution: NP-Hard!)
 - Use algorithms like maximum parsimony or maximum likelihood

Phylogenomic inference methodology IV

- 6. Identify closely related subtrees
- 7. Overlay with experimental data
 - More filtering to reduce noise
- Given the tree topology, use only closely related subgroups (in addition to filtering distant homologs in step 1)

Phylogenomic inference methodology V

- 8. Differentiate orthologs and paralogs
 - Computational tree reconciliation examples:
 - NCBI COG DB: Bidirectional top BLAST hits
 - ► Complex statistical algorithms like RIO (*Resampled inference of orthologs*), orthostrapper or BETE
 - Computationally intensive, requires highly-filtered input data

SIFTER

- 9. Infer function from orthologs
 - Statistical Inference of Function Through Evolutionary Relationships
 - Predicts protein function (homology-based) given a reconciled tree
 - ightarrow Tree construction & reconciliation remains a problem
 - Based on bayesian statistics
 - Complex mathematics (not shown here)

PhyloFacts I

- "Encyclopedia"of "books"for known protein (super)families and structura domains
- 92800 families (as of 2013-02-03)
- Precomputed phylogenetic trees & phylogenomic family HMMs
 - ightarrow Reasonably fast, but "Some results can take hours to complete"
- Provides structured access to annotated phylogenomic information about protein (super)families

PhyloFacts II

- FAT-CAT: PhyloFacts
 Webservice to predict protein function using phylogenomic methods
- Integrates with Pfam and uses HMMs to find the sequence position in the precomputed tree

PhyloFacts III

Issues of phylogenomic methods I

in-silico – Involves manual steps

- 1. Cluster homolog proteins
- 2. Compute multiple alignment
- 3. Edit alignment
- 4. Mask less-conserved regions in alignment
- 5. Construct phylogenetic tree
- 6. Identify closely related subtrees
- 7. Overlay with experimental data
- 8. Differentiate orthologs and paralogs
- 9. Infer function from orthologs

Issues of phylogenomic methods II

- 1. Cluster homolog proteins
- 2. Compute multiple alignment
- 3. Edit alignment
- 4. Mask less-conserved regions in alignment
 - Manual annotation & selection
 - → Subjective, error-prone, time/cost-intensive
 - Information will be lost, does the annotator just select what he wants to see?
 - Algorithms too sensitive, are results always reliable?

Issues of phylogenomic methods III

- 5. Construct phylogenetic tree
 - Distance-based vs. character-based construction algorithms
 - Small, highly-conserved protein families perform better than large (super)families
 - Lack of consistency across methods
 - ► Algorithms scale poorly → Can't be used for large (super)families
 - Some methods produce millions of equivalently scored topologies

Issues of phylogenomic methods IV

- 7. Overlay with experimental data
 - ▶ Database = Experimental data + inferred data
 - ► Experimental datasets available ↔ Protein function already know
 - ▶ Protein function unknown ↔ few experimental datasets available

Issues of phylogenomic methods V

- Multiple subsequent filter passes
- Huge sets of parameters, impossible to select optimal values
- Requires manual annotation & experimental data
- Sometimes even orthology is not sufficient for annotation transfer
- Doesn't work well with distant homologs, requires highly-conserved domains

Future of phylogenomic inference

Phylogenomics alone has too many problems and open questions, but...

Future of phylogenomic inference

- Phylogenomics alone has too many problems and open questions, but...
- ...together with other concepts functional prediction accuracy can be enhanced
- Computational complexity: Moore's law and alternative computational hardware
 - \rightarrow Large-scale application feasible in the future?
- Phylogenomic inference for DB verification
- Can also be applied to other attributes (besides protein function)
- PhyloFacts & SIFTER: Usable tools, but apparently not widely adopted or actively developed

Conclusion (Phylogenomic inference)

 Powerful concept for enhancing function prediction accuracy by identifying orthologs

Conclusion (Phylogenomic inference)

- Powerful concept for enhancing function prediction accuracy by identifying orthologs
- ... if it would actually work in practice
- ► Too complex, too manual, too many parameters
- ▶ Pure *in-silico* phylogenomics
 - \rightarrow Low quality results
- Manual annotation can't keep up with HTS
- PhyloFacts provides a useful database for function prediction using phylogenomic approaches

Conclusion (Seminar)

- in-silico protein function inference is a yet unsolved problem in computational biology
- Combine any information that is available, including:
 - Context-based prediction
 - Alternative splicing
 - SNPs
 - Phylogenomics
 - Experimental results
- Only with all this information combined sufficient accurracy for *in-silico* function prediction is achievable

References

Kimmen Sjölander

Phylogenomic inference of protein molecular function: advances and challenges *Bioinformatics*, 2004

Barbara E. Engelhardt et al.

Protein Molecular Function Prediction by Bayesian Phylogenomics PLoS Computational Biology, 2005

Jonathan A. Eisen & Claire M. Frasier

Phylogenomics:Intersection of Evolution and Genomics Science, 2003

Duncan Brown, Kimmen Sjölander

Functional Classification using Phylogenomic Inference *PLoS Computational Biology*, 2006

Nandini Krishnamurthy et al.

PhyloFacts: an online structural phylogenomic encyclopedia for protein functional and structural classification

Genome Biology, 2006

Barbara E. Engelhardt et al.

A graphical model for predicting protein molecular function

Proceedings of the International Conference on Machine Learning (ICML), 2006

Web & image sources

http://phylogenomics.berkeley.edu/

Folie 26 von 27

Thank you for your attention!

References and sources available at https://github.com/ulikoehler/Hauptseminar

Questions?