SEMINAR REPORT

Phylogenomic inference

Uli Kohler — 2014-02-03

Contents

1 Introduction
2 lIssues of non-phylogenomic function prediction
3 Phylogenomic methodology

4 Phylogenomic tools & databases
4.1 SIFTER . . . . . e
4.2 PhyloFacts . . . . . .

5 Common problems of phylogenomics

6 Conclusion & Outlook



1 Introduction

1 Introduction

Since high-throughput sequencing is commercially available, computational biologist are facing
an ever-increasing amount of genomic and proteomic data.

In order to leverage all this information for applications like in-silico drug target searching,
advanced methods have been developed that use databases of known protein properties in order
to infer properties of new proteins.

The most interesting property of any protein is its function — if the function would be known
for any protein in the proteome, it would be relatively easy to derive potential drug targets
from this information.

One of the most important concepts in this area of bioinformatics is homology-based function
prediction: Proteins of high similarity have a high probability of having a similar or identical
function that has possibly been conserved in the evolutional history of the organism.

However, in order to assess protein function with high significance, the analysis has to use
information from all available sources in order to eliminate as many sources of error as possible.

This report will summarize Phylogenomics, a methodology to augment prediction quality by
using phylogenetics in order to differentiate orthologs and paralogs, with the former having a
higher probability of conserving their function during evolution.

2 Issues of non-phylogenomic function prediction

(Classical function prediction methods are often built on the comparison of protein features like
tertiary structure.

This concept is based on the assumption that if structural elements like domains are conserved
in a protein family, there is a significant probability that the element is critical for the family-
specific function.

For most proteins that are known today however, the tertiary structure is not known — the
PDB database currently contains ~90000! structures, whereas ~5.1 x 10% UniProt/TrEMBL?
sequences.

This huge discrepancy is mainly based on the expensiveness of structural assessment methods
like X-ray crystallography that not only require a specialized laboratory, but also — for each
individual experiment — expert knowledge to crystallize the protein and assess the X-ray
crystallogram. To date, only few advances have been made in automation of those methods
(a summary is provided at [Gro07]) and most of them require a high-quality X-ray beam only
available in particle accelerators like Synchrotrons which are not available to most laboratories.

In the future, this discrepancy is expected to increase even more, because commercially
available sequencers drop in price rapidly and allow semi-automatic sequencing with a speed of
several Gigabases per day. Besides these devices yielding a large amount of predicted proteins,
recent advances have been made in an area called shotgun proteomics that use shotgun sequencing
methods well-known from genomic sequencing methodologies in order to sequence proteoms
directly. As described in [WM™02], these methods are available since more than ten years and
will.

Therefore, in order to cope with the massive amount of sequence-only proteins, computational
biology tries to infer protein functions from sequence and relations to known proteins.
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3 Phylogenomic methodology

Systematic errors of non-phylogenomic prediction While those methods yield high-quality
predictions for a large number of proteins, there are several systematic errors outlined in [BS06]:

e Gene duplication is not taken into account, yielding a predicted orthology, while the
proteins would have to be considered paralog

o Domain shuffling events that cause highly similar sequences to have different protein
functions due to a largely different structure

o FEvolutionary distance is not used to augment the prediction, therefore the chance of
homolog proteins having the same function in distantly-related species is overrated.

3 Phylogenomic methodology

Phylogenomics attempts to minimize the influence of aforementioned errors by improving
homology metrics using phylogenetic information that provides knowledge about the evolutionary
history of the protein in question.

The core concept of phylogenomics is the differentiation of homologs into orthologs and
paralogs.

Orthologs have a higher probability of conserving function over evolution, whereas two proteins
identified as paralog usually have different functions.

If sufficient data is available to build a phylogenetic tree®, phylogenomic algorithms classify
branching points in the tree as either duplication or speciation, with the former yielding paralog
proteins whereas the latter yields orthologs (see [EF03]). This process is called tree reconciliation

A conceptual example of what is classified is visualized in figure 1.

Duplication or speciation?

Loy

Figure 1: Concept of Phylogenomics: Differentiating orthologs and paralogs

Phylogenomic workflow A typical workflow for phylogenomic analysis, as described in [Sjo04],
consists of ten steps, some of which are shared with classical methods.

1. Cluster homolog proteins

2. Compute multiple alignment

3Generally, the tree can be deduced from a sequence set alone, however this approach w ould introduce too
much noise




3 Phylogenomic methodology

3. Edit alignment (remove potential non-homologs)
4. Mask less-conserved regions in alignment

5. Construct phylogenetic tree

6. Identify closely related subtrees

7. Overlay with experimental data

8. Differentiate orthologs and paralogs
(Tree reconciliation)

9. Infer function from orthologs

The first two steps are, to some extent, shared with most classical methods, however, contrary
to said classical methods, the described workflow involves manual steps, most notably steps 3),
4) and 7).

Phylogenetic tree construction Algorithms to construct a phylogenetic tree can be classified
into two main subgroups: distance-based and character-based methods.

Whereas distance-based methods only compute pairwise distances between any two sequences
and construct this tree solely based on the distance matrix — therefore gaining a huge advantage
in computational complexity — character-based methods have advantages regarding accuracy,
but are too slow for practical use on medium to large trees (see [Sj604]).

A detailed comparison of distance-based and character-based methods can be found in [Fel78].

Besides the high computational complexity of both classes of methods, there are other severe
issues with tree construction in general (as outlined in [Sj604, p. 4f]):

o Trees generated with different methods are inconsistent with each other?

o For some algorithms, several millions of trees have the same score even for medium-sized
datasets. Often, those trees have major differences, making it impossible to select a
consistent topology)

o Small, highly-conserved protein families perform better than large (super)families

Filtering overview The steps in the workflow that have not been described so far have the
purpose to remove noise from the input data. However, this concept yields a number of issues
that are described in section 5 on page 7

Because of the limited extent of this report, these filter steps are not explained in detail here.
See [Sjo04, p. 3ff] for a detailed description of the purpose and algorithms for each individual
step.

Manual steps According to [Sjo04] his specific workflow proved to yield better results than
alternatives (especially those that don’t involve manual steps). Issues in relation to manual
aspects of the analysis will be discussed in detail in section 5 on page 7.

41t therefore can be assumed, that for real, large-scale data, the trees are unalike the true, unknown biological
tree
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4 Phylogenomic tools & databases

4.1 SIFTER

SIFTER (see [EJMBO05]) is a tool to infer protein function from a reconciled phylogenetic tree
based on bayesian statistics.

As the mathematical methodology of SIFTER is highly complex and would require many
pages of introductory mathematics, this report will not describe in detail how SIFTER works
internally.

However, it should be noted that SIFTER circumvents most of the general phylogeny issues by
only solving the last step of the workflow outlined in section 3 on page 3. While SIFTER itself
may be mathematically correct and work well on test data, the rest of the phylogenomic workflow
will often provide a low-quality reconciled tree as input for SIFTER, effectively rendering the
output data useless.

4.2 PhyloFacts

PhyloFacts, first described in [KBKS06] is an “Encyclopedia” of “books” for known protein
(super)families and structural domains. Since its initial publication, it changed significantly
and now provides the FAT-CAT webserver (see [ASDT13]) that allows interactive protein
classification.

Although it is published by the same group at Berkeley University as the workflow (see [Sj604])
and SIFTER (see [EJMBO05)), it circumvents most of the complexity by using a pre-computed
phylogenetic tree and tries to place the query protein inside an appropriate position in said tree.

As the tree is already reconciled (even if assessing the quality of the reconciliation seems
to be error-prone considering the results of this report, yet outside the scope of this report),
FAT-CAT can use methods like SIFTER®.

The full workflow used by fatcat is visualized in figure 2 on the following page®. A highly-
detailed description of their methodology, is not within the scope of this report, however it’s
noteworthy that they first perform a family search using hidden markov models in order to
place the query sequence in an appropriate position in the reconciled tree.

The red arrows in figure 2 on the next page denote the workflow of FAST-CAT, a new,
experimental variant of FAT-CAT that avoids some of the computational complexity of FAT-
CAT.

How useful is PhyloFacts? Within the scope of this report, there are very few aspects that
allow to make assumptions about the actual usefulness of SIFTER.

Because these results are likely not significant, this report will list some aspects that seem
related to the usefulness without drawing any conclusions.

o PhyloFacts is not open-sourced — in the opinion of the author of this report, it therefore
clearly violates the scientific principle of reproducibility. It will be almost impossible to
find bugs in both the implementation and the data basis in a complex application like
PhyloFacts if the code is not provided to the general public.

°In [KBKS06] the authors state that they intend to use SIFTER itself in the future, yet it is unknown whether
it is actually used in the newest version
6Image source: http://makana.berkeley.edu/phylofacts/fatcat/about/
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Figure 2: The FAT-CAT workflow pipeline

o Within the 3-day long FAT-CAT research for the talk corresponding to this report, the
job ID numbers of FAT-CAT ascended monotonically, and increased (on average) by only
about 10 per day’. It can therefore be assumed that PhyloFacts is not very widely used

« [KBKSO06] has been cited only 27 times since 2006. While this is more than e.g. SIMAP
(see [ARTT05]) which has been cited 18 times since 2005 and since 2011 been used as
STRING data source (see [SFK*11]), it can be assumed that a widely and publicly adopted
tool would be cited more often

o The runtime of the tool takes dozends of minutes even for < 300 AA query sequences

 For multiple randomly selected predicted TrEMBL sequences®, PhyloFacts did not return
any results beside PFam families (said families equivalent to those listed in UniProt).
Therefore, it did not predict any function for these queries. This aspect might require
further research, but raises doubts whether PhyloFacts is useful also for de-novo analyses
that don’t use known proteins with close relatives in the phylogenetic tree

o The SIFTER homepage (http://sifter.berkeley.edu/) says “Check back here for a
SIFTER server sometime in the next few months!” since 2006. Although PhyloFacts seems

"STRING had more than 80000 queries per day, averaged over a 7-day period
8Example: A1ULI6. MYCSK
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to be updated in several-year intervals, it is neither clear when the underlying database is
updated (and, for example, if the parameters change) nor can anyone predict the future
of the tool. The “Encyclopedia” has completely disappeared since the initial PhyloFacts
release.

o Conceptually, new sequences require the reconciled tree to incorporate close relatives. For
many biologically relevant applications it is possible the tree doesn’t contain any such
sequence, and it’s impossible to reproduce based on a specialized dataset because the
application source code is not publically accessible

What seems to be useful about PhyloFacts is the attempt of the database to integrate
information (especially phylogenetic information) from different sources (e.g. PFAM). If a user
has a phylogeny-related question about a query sequence (e.g. distant clades), PhyloFacts seems
to be able to provide a user-friendly interface (e.g. for biologists that don’t want to deal with
complex bioinformatics toolsets), as depicted in figure 3.

Additionally, the FAT-CAT query supports selectable preset parameters, for example High
recall and High precision.

FAT-CAT Results for FAT-CAT

Family Matches
Pfam MDA

andidale Orthologs Number of family matches 7

Other Sequence Matches Number of enclosing clades 0
Number of distant clades 7
Enclosing Clades Number of candidate ortholog clusters 0
Number of other sequence matches o
Distant Clades (may include both orthelogs and paralogs)
There are no orthologs based on the parameters set for this FAT-CAT job. You may want to look at Other Sequence Matches or resubmit using the Remote Homolog or Partial Sequence
Downloads searches (and/or modify parameters to increase recall).

Job Summary

About FAT-CAT

Figure 3: The FAT-CAT result page

5 Common problems of phylogenomics

Manual annotation requirement As described in section 3 on page 3 the workflow described
in [Sjo04]. While this might improve the quality of the result, essentially it renders the method
useless in the context of large-scale analysis as described in section 2 on page 2.

Because of limited availability of expert human resources, phylogenomic analyses with sufficient
quality can’t be performed on a large scale, even if the computational complexity of the
automatable steps would not be an issue.

Huge parameter sets The workflow described in [Sj604] incorporates several layers of filtering
that depend on a large parameterset and even on human factors. It can be assumed that for any
real analysis being performed, a large subset of the parameters is chosen suboptimally, because
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no inherently correct method is known that allows one to choose an optimal parameterset of
that size.

In order to achieve optimal results, the parameters would need to be selected for each prediction
individually — however, that is not possible in lack of an absolute reference (representing the
biological reality). Almost all algorithms in bioinformatics suffer from similar problems, however
in case of phylogenomics the parameterset is — caused by the large number of steps — extremely
large and contains a large number of known and unknown interdependencies..

Because of the human factor involved in the manual steps, a result may be irreproducible by
another researcher, rendering the results subjective.

Parameter sensitivity Although a detailed analysis is outside the scope of this report, in [Sj604]
it is observed that the quality of the results depends on all the filtering passes being present in
the workflow. This leads to the conclusion that the non-filter steps are so sensitive to noise that
any minimal change in the input data could yield a totally different result.

Because interdependencies in the parameters are largely unknown and the high dimensionality
of the parameter space, it is essentially impossible to conclude that any result is not the case of
an overyl

This issue gets even more significant in cotext of manual processing: Even if assuming two
researchers will select similar options for the same input data, a minor change in the parameters
they use could cause the result to change significantly.

Loss of information Effectively, the huge parameter sets create a paradox: The phylogenomic
method which is intended to augment a prediction by adding new information actually loses a
significant amount of information in the filtering passes — up to an extent where the prediction
quality is detrimente. For real predictions (i.e. those lacking an absolute reference), this effect
is impossible to detect

Deducing information from itself Non-phylogenomic methods usually work well for closely-
related protein families that will only infrequently express behaviour that yields systematic
errors as outlined in section 2 on page 3. It can be assumed that if a large amount of information
is available about a protein, classical methods provide a sufficient prediction quality, rendering
phylogenomics useful especially for cases where few information is available.

However, few information being available could hypothetically be detrimental to the phyloge-
netic tree — in many cases the information contained in said tree will be derived only from the
protein family sequence set itself. However, the same exact sequence set will be used for the
classical prediction that will be augmented by phylogenetic information.

Therefore, in an extreme the prediction would actually be augmented with information it
already contains, rendering the augmentation useless and (under some circumstances) even
decreasing the prediction quality because some aspects of the original prediction are overrated
in the final score

It is outside of this report’s scope to discuss or assess the effect of this behaviour in general,
however it shall be noted that most augmentation methods express a similarly problematic
behaviour. The author of this report assumes it is highly problematic to filter out these causality
loops, because detailed information about the data sources is not available for any database.
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Resolving database issues using phylogenomics While [BS06] mentions — besides the sys-
tematic errors outlined in section 2 on page 3 — the “propagation of errors in databases” as a
systematic error that can be detrimental to data quality, there seems to be no apparent reason
why phylogenomics should be better in resolving those issues than any other method leveraging
additional data sources.

To the author of this report, the problems outlined before seem to be too severe to conclude
without any doubt that phylogenomics will resolve database issues instead of creating even
more ones and making manual result assessment difficult by adding yet another, potentially
inaccurate layer of complexity to the prediction.

6 Conclusion & Outlook

Phylogenomics is a method that attempts to augment function prediction by leveraging evo-
lutional information to differentiate orthology and paralogs. Even if a full analysis based on
carefully selected test data is outside the scope of this report, the issues described in this report
arise doubts whether phylogenomics provides a tool that can be used for real data.

However, issues like the high computational complexity might be partially resolved by
advancements in computational hardware or algorithms in the future. PhyloFacts provides an
example of how a computationally-feasible phylogenomic tool can be predicted, although the
quality of the results in contrast to other databases

In practical function prediction, however, it’s neccessary to combine any available information
and method. Although care has to be taken to ensure the issues of phylogenomics are not
detrimental to the result, in many cases other information sources like context-based prediction
are not sufficient for a significant result.

Therefore, disregarding any practical issues, phylogenomics provide one of many conceptual
sources of information, all of which have to be combined to improve in-silico predictions.
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